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Preface 

Deep Learning Using Python involves harnessing Python's robust libraries 

like TensorFlow, PyTorch, and Keras to develop and deploy sophisticated 

neural network models. Python's versatility and extensive ecosystem make it 

a preferred choice for implementing deep learning algorithms, enabling 

developers to tackle complex tasks such as image and speech recognition, 

natural language processing, and more. This book explores fundamental 

concepts, practical techniques, and advanced applications of deep learning 

within the Python environment.  

The journey begins with an introduction to deep learning principles, 

covering neural network architecture, activation functions, loss functions, 

and optimization algorithms. Readers learn to preprocess data, including 

techniques for normalization, feature scaling, and handling missing values, 

essential for preparing datasets for training neural networks. 

Next, the book delves into building various types of neural networks using 

Python libraries. From feedforward neural networks for basic tasks to 

convolutional neural networks (CNNs) for image data and recurrent neural 

networks (RNNs) for sequential data processing, each chapter provides 

hands-on examples and code snippets to facilitate understanding and 

implementation. 

Advanced topics include transfer learning, where pre-trained models are 

finetuned for specific tasks, and generative adversarial networks (GANs) for 

creating synthetic data. Throughout the book, emphasis is placed on practical 

application, with discussions on model evaluation, hyperparameter tuning, 

and troubleshooting common issues encountered in deep learning projects. 
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Moreover, the integration of deep learning with Python's data visualization 

libraries like Matplotlib and Seaborn enables visualizing model performance 

metrics and data distributions, enhancing interpretability and decision-

making in model development. 

Real-world applications such as autonomous driving, medical diagnosis, and 

financial forecasting are explored to demonstrate the impact of deep learning 

in solving complex problems. Case studies and projects provide 

opportunities for readers to apply their knowledge, reinforcing concepts and 

enhancing practical skills in deep learning with Python. 

Deep Learning Using Python equips readers with the essential tools and 

knowledge to embark on their journey into deep learning. Whether for 

academic study, professional development, or personal interest, this book 

serves as a comprehensive guide to mastering deep learning techniques and 

leveraging Python's capabilities to build intelligent systems for diverse 

applications. 

This book explores the practical aspects of deep learning in Python, 

equipping readers with the skills to tackle complex AI challenges with 

confidence and clarity. 
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An Introduction to Deep 

  Learning  

 
Deep learning is a subset of machine learning that focuses on algorithms 

inspired by the structure and function of the human brain‘s neural networks. It 
has revolutionized artificial intelligence (AI) by enabling machines to learn from 
large amounts of data and perform tasks that were previously thought to be 
exclusive to human cognition. 

This introduction provides an overview of deep learning, its principles, 
applications, and key concepts. 

 
 

 
 

At its core, deep learning utilizes artificial neural networks (ANNs) to process 
data and extract meaningful patterns. These networks are composed of layers of 
interconnected nodes, or neurons, that perform computations. Each layer processes 
the input data and passes it on to the next layer, with each subsequent layer learning 
more abstract features from the data. 

NEURAL NETWORK LAYERS 

1. Input Layer: Receives raw data as input, such as images, text, or numerical 
data. 

2. Hidden Layers: Intermediate layers between the input and output layers. 
Each hidden layer performs complex transformations and feature extraction. 
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3. Output Layer: Produces the final output based on the computations 
performed by the hidden layers. The number of nodes in the output layer 
depends on the type of problem (e.g., classification, regression). 

FUTURE DIRECTIONS AND CHALLENGES 

As deep learning continues to evolve, researchers are exploring new 
architectures (e.g., attention mechanisms, graph neural networks) and improving 
model interpretability and efficiency. Challenges include data privacy concerns, 
biases in training data, and the need for computational resources for training large 
models. 

Deep learning is a sub-field of machine learning dealing with algorithms 
inspired by the structure and function of the brain called artificial neural networks. 
In other words, It mirrors the functioning of our brains. Deep learning algorithms 
are similar to how nervous system structured where each neuron connected each 
other and passing information. 

APPLICATIONS OF DEEP LEARNING 

Deep learning has found applications across various domains, transforming 
industries and enhancing capabilities in: 

• Computer Vision: Deep learning models like Convolutional Neural Networks 
(CNNs) are used for tasks such as image classification, object detection, 
and facial recognition. Applications include autonomous vehicles, medical 
imaging, and surveillance systems. 

• Natural Language Processing (NLP): Deep learning techniques such as 
Recurrent Neural Networks (RNNs) and Transformer models are applied 
to tasks like language translation, sentiment analysis, and chatbots. 
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Companies use NLP for customer service automation, content generation, 
and information retrieval. 

• Speech Recognition: Deep learning algorithms power speech recognition 
systems in virtual assistants (e.g., Siri, Alexa) and dictation software. They 
convert spoken language into text, enabling hands-free operation and 
accessibility features. 

• Healthcare: Deep learning models analyze medical images (e.g., X-rays, 
MRIs) to assist in disease diagnosis and treatment planning. They also 
predict patient outcomes based on electronic health records (EHR) data, 
improving personalized medicine. 

• Finance: Deep learning algorithms analyze financial data for fraud detection, 
risk assessment, and trading strategies. They process vast amounts of data 
in real-time, providing insights for investment decisions and market 
forecasting. 

Key Concepts in Deep Learning 

1. Backpropagation: A training algorithm that adjusts the weights of neural 
network connections based on the error between predicted and actual 
outputs. It enables networks to learn from data and improve performance 
over time. 

2. Activation Functions: Functions applied to neuron outputs to introduce 
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non-linearity and enable the network to learn complex patterns. Common 
activation functions include ReLU (Rectified Linear Unit) and Sigmoid. 

3. Loss Functions: Measure the difference between predicted and actual 
outputs during training. They guide the optimization process by quantifying 
the model‘s performance. 

4. Optimization Algorithms: Techniques such as Gradient Descent and its 
variants adjust network parameters to minimize the loss function, optimizing 
model performance. 

One of differences between machine learning and deep learning model is on 
the feature extraction area. Feature extraction is done by human in machine 
learning whereas deep learning model figure out by itself. 

 
 

  
 

Most modern deep learning models are based on artificial neural networks, 
specifically convolutional neural networks (CNN)s, although they can also include 
propositional formulas or latent variables organized layer-wise in deep generative 
models such as the nodes in deep belief networks and deep Boltzmann machines. 

In deep learning, each level learns to transform its input data into a slightly 
more abstract and composite representation. In an image recognition application, 
the raw input may be a matrix of pixels; the first representational layer may 
abstract the pixels and encode edges; the second layer may compose and encode 
arrangements of edges; the third layer may encode a nose and eyes; and the fourth 
layer may recognize that the image contains a face. Importantly, a deep learning 
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process can learn which features to optimally place in which level on its own. This 
does not eliminate the need for hand-tuning; for example, varying numbers of 
layers and layer sizes can provide different degrees of abstraction. 

The word ―deep‖ in ―deep learning‖ refers to the number of layers through 
which the data is transformed. More precisely, deep learning systems have a 
substantial credit assignment path (CAP) depth. The CAP is the chain of 
transformations from input to output. CAPs describe potentially causal connections 
between input and output. For a feedforward neural network, the depth of the 
CAPs is that of the network and is the number of hidden layers plus one (as the 
output layer is also parameterized). For recurrent neural networks, in which a 
signal may propagate through a layer more than once, the CAP depth is potentially 
unlimited. No universally agreed-upon threshold of depth divides shallow learning 
from deep learning, but most researchers agree that deep learning involves CAP 
depth higher than 2. CAP of depth 2 has been shown to be a universal approximator 
in the sense that it can emulate any function. Beyond that, more layers do not add 
to the function approximator ability of the network. Deep models (CAP > 2) are 
able to extract better features than shallow models and hence, extra layers help 
in learning the features effectively. 

Deep learning architectures can be constructed with a greedy layer-by-layer 
method. Deep learning helps to disentangle these abstractions and pick out which 
features improve performance. 

For supervised learning tasks, deep learning methods eliminate feature 
engineering, by translating the data into compact intermediate representations akin 
to principal components, and derive layered structures that remove redundancy 
in representation. 

Deep learning algorithms can be applied to unsupervised learning tasks. This 
is an important benefit because unlabeled data are more abundant than the labeled 
data. Examples of deep structures that can be trained in an unsupervised manner 
are deep belief networks. 

INTERPRETATIONS 

Deep neural networks are generally interpreted in terms of the universal 
approximation theorem or probabilistic inference. 

The classic universal approximation theorem concerns the capacity of 
feedforward neural networks with a single hidden layer of finite size to approximate 
continuous functions. In 1989, the first proof was published by George Cybenko 
for sigmoid activation functions and was generalised to feed-forward multi-layer 
architectures in 1991 by Kurt Hornik. Recent work also showed that universal 
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approximation also holds for non-bounded activation functions such as the rectified 
linear unit. 

The universal approximation theorem for deep neural networks concerns the 
capacity of networks with bounded width but the depth is allowed to grow. Lu 
et al. proved that if the width of a deep neural network with ReLU activation is 
strictly larger than the input dimension, then the network can approximate any 
Lebesgue integrable function; If the width is smaller or equal to the input dimension, 
then a deep neural network is not a universal approximator. 

The probabilistic interpretation derives from the field of machine learning. It 
features inference, as well as the optimization concepts of training and testing, 
related to fitting and generalization, respectively. More specifically, the probabilistic 
interpretation considers the activation nonlinearity as a cumulative distribution 
function. The probabilistic interpretation led to the introduction of dropout as 
regularizer in neural networks. The probabilistic interpretation was introduced by 
researchers including Hopfield, Widrow and Narendra and popularized in surveys 
such as the one by Bishop. 

HISTORY 

Some sources point out that Frank Rosenblatt developed and explored all of 
the basic ingredients of the deep learning systems of today. He described it in his 
book ―Principles of Neurodynamics: Perceptrons and the Theory of Brain 
Mechanisms‖, published by Cornell Aeronautical Laboratory, Inc., Cornell 
University in 1962. 

The first general, working learning algorithm for supervised, deep, feedforward, 
multilayer perceptrons was published by Alexey Ivakhnenko and Lapa in 1967. 
A 1971 paper described a deep network with eight layers trained by the group 
method of data handling. Other deep learning working architectures, specifically 
those built for computer vision, began with the Neocognitron introduced by 
Kunihiko Fukushima in 1980. 

The term Deep Learning was introduced to the machine learning community 
by Rina Dechter in 1986, and to artificial neural networks by Igor Aizenberg and 
colleagues in 2000, in the context of Boolean threshold neurons. 

In 1989, Yann LeCun et al. applied the standard backpropagation algorithm, 
which had been around as the reverse mode of automatic differentiation since 
1970, to a deep neural network with the purpose of recognizing handwritten ZIP 
codes on mail. While the algorithm worked, training required 3 days. 

Independently in 1988, Wei Zhang et al. applied the backpropagation algorithm 
to a convolutional neural network (a simplified Neocognitron by keeping only the 
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convolutional interconnections between the image feature layers and the last fully 
connected layer) for alphabets recognition and also proposed an implementation 
of the CNN with an optical computing system. Subsequently, Wei Zhang, et al. 
modified the model by removing the last fully connected layer and applied it for 
medical image object segmentation in 1991 and breast cancer detection in 
mammograms in 1994. 

In 1994, André de Carvalho, together with Mike Fairhurst and David Bisset, 
published experimental results of a multi-layer boolean neural network, also 
known as a weightless neural network, composed of a 3-layers self-organising 
feature extraction neural network module (SOFT) followed by a multi-layer 
classification neural network module (GSN), which were independently trained. 
Each layer in the feature extraction module extracted features with growing 
complexity regarding the previous layer. 

In 1995, Brendan Frey demonstrated that it was possible to train (over two 
days) a network containing six fully connected layers and several hundred hidden 
units using the wake-sleep algorithm, co-developed with Peter Dayan and Hinton. 
Many factors contribute to the slow speed, including the vanishing gradient 
problem analyzed in 1991 by Sepp Hochreiter. 

Since 1997, Sven Behnke extended the feed-forward hierarchical convolutional 
approach in the Neural Abstraction Pyramid by lateral and backward connections 
in order to flexibly incorporate context into decisions and iteratively resolve local 
ambiguities. 

Simpler models that use task-specific handcrafted features such as Gabor 
filters and support vector machines (SVMs) were a popular choice in the 1990s 
and 2000s, because of artificial neural network‘s (ANN) computational cost and 
a lack of understanding of how the brain wires its biological networks. 

Both shallow and deep learning (e.g., recurrent nets) of ANNs have been 
explored for many years. These methods never outperformed non-uniform internal- 
handcrafting Gaussian mixture model/Hidden Markov model (GMM-HMM) 
technology based on generative models of speech trained discriminatively. Key 
difficulties have been analyzed, including gradient diminishing and weak temporal 
correlation structure in neural predictive models. Additional difficulties were the 
lack of training data and limited computing power. 

Most speech recognition researchers moved away from neural nets to pursue 
generative modeling. An exception was at SRI International in the late 1990s. 
Funded by the US government‘s NSA and DARPA, SRI studied deep neural 
networks in speech and speaker recognition. The speaker recognition team led by 
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Larry Heck reported significant success with deep neural networks in speech 
processing in the 1998 National Institute of Standards and Technology Speaker 
Recognition evaluation. The SRI deep neural network was then deployed in the 
Nuance Verifier, representing the first major industrial application of deep learning. 

The principle of elevating ―raw‖ features over hand-crafted optimization was 
first explored successfully in the architecture of deep autoencoder on the ―raw‖ 
spectrogram or linear filter-bank features in the late 1990s, showing its superiority 
over the Mel-Cepstral features that contain stages of fixed transformation from 
spectrograms. The raw features of speech, waveforms, later produced excellent 
larger-scale results. 

Many aspects of speech recognition were taken over by a deep learning 
method called long short-term memory (LSTM), a recurrent neural network 
published by Hochreiter and Schmidhuber in 1997. LSTM RNNs avoid the vanishing 
gradient problem and can learn ―Very Deep Learning‖ tasks that require memories 
of events that happened thousands of discrete time steps before, which is important 
for speech. In 2003, LSTM started to become competitive with traditional speech 
recognizers on certain tasks. Later it was combined with connectionist temporal 
classification (CTC) in stacks of LSTM RNNs. In 2015, Google‘s speech recognition 
reportedly experienced a dramatic performance jump of 49% through CTC-trained 
LSTM, which they made available through Google Voice Search. 

In 2006, publications by Geoff Hinton, Ruslan Salakhutdinov, Osindero and 
Teh showed how a many-layered feedforward neural network could be effectively 
pre-trained one layer at a time, treating each layer in turn as an unsupervised 
restricted Boltzmann machine, then fine-tuning it using supervised backpropagation. 
The papers referred to learning for deep belief nets. 

Deep learning is part of state-of-the-art systems in various disciplines, 
particularly computer vision and automatic speech recognition (ASR). Results on 
commonly used evaluation sets such as TIMIT (ASR) and MNIST (image 
classification), as well as a range of large-vocabulary speech recognition tasks 
have steadily improved. Convolutional neural networks (CNNs) were superseded 
for ASR by CTC for LSTM. but are more successful in computer vision. 

The impact of deep learning in industry began in the early 2000s, when CNNs 
already processed an estimated 10% to 20% of all the checks written in the US, 
according to Yann LeCun. Industrial applications of deep learning to large-scale 
speech recognition started around 2010. 

The 2009 NIPS Workshop on Deep Learning for Speech Recognition was 
motivated by the limitations of deep generative models of speech, and the possibility 
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that given more capable hardware and large-scale data sets that deep neural nets 
(DNN) might become practical. It was believed that pre-training DNNs using 
generative models of deep belief nets (DBN) would overcome the main difficulties 
of neural nets. However, it was discovered that replacing pre-training with large 
amounts of training data for straightforward backpropagation when using DNNs 
with large, context-dependent output layers produced error rates dramatically 
lower than then-state-of-the-art Gaussian mixture model (GMM)/Hidden Markov 
Model (HMM) and also than more-advanced generative model-based systems. The 
nature of the recognition errors produced by the two types of systems was 
characteristically different, offering technical insights into how to integrate deep 
learning into the existing highly efficient, run-time speech decoding system deployed 
by all major speech recognition systems. Analysis around 2009–2010, contrasting 
the GMM (and other generative speech models) vs. DNN models, stimulated early 
industrial investment in deep learning for speech recognition, eventually leading 
to pervasive and dominant use in that industry. That analysis was done with 
comparable performance (less than 1.5% in error rate) between discriminative 
DNNs and generative models. 

In 2010, researchers extended deep learning from TIMIT to large vocabulary 
speech recognition, by adopting large output layers of the DNN based on context- 
dependent HMM states constructed by decision trees. 

Advances in hardware have driven renewed interest in deep learning. In 2009, 
Nvidia was involved in what was called the ―big bang‖ of deep learning, ―as deep- 
learning neural networks were trained with Nvidia graphics processing units 
(GPUs).‖ That year, Andrew Ng determined that GPUs could increase the speed 
of deep-learning systems by about 100 times. In particular, GPUs are well-suited 
for the matrix/vector computations involved in machine learning. GPUs speed up 
training algorithms by orders of magnitude, reducing running times from weeks 
to days. Further, specialized hardware and algorithm optimizations can be used 
for efficient processing of deep learning models. 

 
 

 
 

We cannot start deep learning without explaining linear and logistics regression 
which is the basis of deep learning. 

Linear regression 

It is a statistical method that allows us to summarise and study relationships 
between two continuous (quantitative) variables. 
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In this example, we have historical data based on the size of the house. We 
plot them into the graph as seen as dot points. Linear regression is the technique 
where finding a straight line between these points with less error(this will be 
explained later). Once we have a line with less error, we can predict the house 
price based on the size of the house. 

Here is another example how linear regression predict in a joke manner. 

Logistic regression 

It is a statistical method for analysing a dataset in which there are one or more 
independent variables that determine an outcome. The outcome is measured in 
which there are only two possible outcomes: True or False. 
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In this example, we have historical dataset of student which have passed and 
not passed based on the grades and test scores. If we need to know a student will 
pass or not based on the grade and test score, logistic regression can be used. 

In logistic regression, similar to linear regression, it will find best possible 
straight line that separate the two classification(passed and not passed). 

ACTIVATION FUNCTION 

Activation functions are functions that decide, given the inputs into the node, 
what should be the node‘s output? Because it‘s the activation function that decides 
the actual output, we often refer to the outputs of a layer as its ―activations‖. 

One of the simplest activation functions is the Heaviside step function. This 
function returns a 0 if the linear combination is less than 0. It returns a 1 if the 
linear combination is positive or equal to zero. 

The output unit returns the result of f(h), where h is the input to the output 
unit: 

WEIGHTS 

When input data comes into a neuron, it gets multiplied by a weight value 
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that is assigned to this particular input. For example, the neuron above university 
example have two inputs, tests for test scores and grades, so it has two associated 
weights that can be adjusted individually. 

Use of weights 

These weights start out as random values, and as the neural network learns 
more about what kind of input data leads to a student being accepted into a 
university, the network adjusts the weights based on any errors in categorization 
that the previous weights resulted in. This is called training the neural network. 

Remember we can associate weight as m(slope) in the orginal linear equation. 

y = mx+b 

BIAS 

Weights and biases are the learnable parameters of the deep learning models. 

Bias represented as b in the above linear equation. 
 
 

   
 

  
 

The above graph depicts a performance comparison between the traditional 
machine learning algorithms and deep learning techniques on the amount of data. 
It is evident from the chart that the performance of deep learning algorithms 
increases with an increase in the amount of data. In contrast, for the traditional 
algorithms in machine learning, the performance rises to an extent but remains 
constant (flat line). 

As per International Data Corporation (IDC), worldwide data will grow 61% 
to 175 zettabytes by 2025! The increasing usage of Social Media platforms, Mobile 
applications, etc. generates a humongous amount of data. 

With the increase in the data and most of the data being unstructured (images, 
videos, audio, etc.) type, deep learning algorithms play a vital role in the data 
revolution era. 

WHAT IS DEEP LEARNING? 

Imagine when you were a kid, and you were asked to learn English Alphabets 
with the books having colorful pictures showing an Apple image for letter A, a 
Ball image for letter B, and so on. Why do you think they had those images when 
the objective was only to learn the alphabet? 

We human beings have a knack for learning concepts visually, and we tend 



An Introduction to Deep Learning 13 
 

 

 

to remember them by using a reference of these visuals.That is why you are likely 
to forget the answers you have written in a certification exam after a couple of 
days if you don‘t revise them again. Similarly, if you have binge-watched a sitcom 
on Netflix, you are likely to remember the dialogues and scenes for a long time 
if you watch it repeatedly. 

INTRODUCTION TO DEEP LEARNING ALGORITHMS 

Before we move on to the list of deep learning models in machine learning, 
let‘s understand the structure and working of deep learning algorithms with the 
famous MNIST dataset. The human brain is a network of billions of neurons that 
help represent a tremendous amount of knowledge. Deep Learning also uses the 
same analogy of a brain neuron for processing the information and recognizing 
them. Let‘s understand this with an example. 

The above image is taken from the very famous MNIST dataset that gives a 
glimpse of the visual representation of digits. The MNIST dataset is widely used 
in many image processing techniques. Now, let‘s observe the image of how each 
number is written in different ways. We as human beings can easily understand 
these digits even if they are slightly tweaked or written differently because we 
have written them and seen them millions of times. But how will you make a 
computer recognize these digits if you are building an image processing system? 
That is where Deep learning comes into the picture! 

What is a Neural Network in Deep Learning? 

One can visually represent the fundamental structure of a Neural network cas 
in the above image, with mainly three components – 

1. Input Layer 

2. Hidden Layers 

3. Output layer 

The above image shows only one Hidden layer, and we can call it an Artificial 
Neural Network or a neural network. On the other hand, deep learning has several 
hidden layers, and that is where it gets its name ―Deep‖. These hidden layers are 
interconnected and are used to make our model learn to give the final output. 

Each node with information is passed in the form of inputs, and the node 
multiplies the inputs with random weight values and adds a bias before calculation. 
A nonlinear or activation function is then applied to determine which particular 
node will determine the output. 

The activation functions used in artificial neural networks work like logic 
gates. So, if we require an output to be 1 for an OR gate. We will need to pass 
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the input values as 0,1 or 1,0. Different deep learning models use different 
activation functions and sometimes a combination of activation functions. We 
have similarities in neural networks and deep learning structures. But one cannot 
use neural networks for unstructured data like images, videos, sensor data, etc. 

We need multiple hidden layers (sometimes even thousands) for these types 
of data, so we use deep neural networks. 

How do Deep Learning Algorithms Work? 

For the MNIST example discussed above, we can consider the digits as the 
input that are sent in a 28x28 pixel grid format to hidden layers for digit recognition. 
The hidden layers classify the digit (whether it is 0,1,2,...9) based on the shape. 
For example – If we consider a digit 8, it looks like having two knots interconnected 
to each other. The image data converted into pixel binaries(0,1) is sent as an input 
to the input layer. 

Each connection in the layers has a weight associated with it, which determines 
the input value‘s importance. The initial weights are set randomly. 

We can have negative weights also associated with these connections if the 
importance needs to be reduced. 

The weights are updated after every iteration using the backpropagation 
algorithm. 

In some cases, there might not be a prominent input image of the digit, and 
that is when several iterations have to be performed to train the deep learning 
model by increasing the number of hidden layers. Finally, the final output is 
generated based on the weights and number of iterations. 

Now that we have a basic understanding of input and output layers in deep 
learning, let‘s understand some of the primary deep learning algorithms, how they 
work, and their use cases. 

TOP DEEP LEARNING ALGORITHMS LIST 

Multilayer Perceptrons (MLPs) 

MLP is the most basic deep learning algorithm and also one of the oldest deep 
learning techniques. If you are a beginner in deep learning and have just started 
exploring it, we recommend you get started with MLP. MLPs can be referred to 
as a form of Feedforward neural networks. 

How does MLP deep learning algorithm work? 

• The working of MLP is the same as what we discussed above in our 
MNIST data example. The first layer takes the inputs, and the last produce 
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the output based on the hidden layers. Each node is connected to every 
node on the next layer, so the information is constantly fed forward 
between the multiple layers, which is why it is referred to as a feed-forward 
network. 

• MLP uses a prevalent supervised learning technique called backpropagation 
for training. 

• Each hidden layer is fed with some weights (randomly assigned values). The 
combination of the weights and input is supplied to an activation function 
which is passed further to the next layer to determine the output. If we don‘t 
arrive at the expected output, we calculate the loss (error) and we back-track 
to update the weights. It is an iterative process until the predicted output 
is obtained (trial and error). It is critical in training the deep learning model, 
as the correct weights will determine your final output. 

• MLP‘s popularly use sigmoid functions, Rectified Linear unit (ReLU), and 
tanh as activation functions. 

APPLICATIONS OF MLP 

It is used by Social media sites (Instagram, Facebook) for compressing image 
data. That significantly helps to load the images even if the network strength is 
not too strong. 

Other applications include Used in image and speech recognition, data 
compression, and also for classification problems. 

Pros of MLP 

1. They do not make any assumptions regarding the Probability density 
functions (PDF), unlike the other models that are based on Probability. 

2. Ability to provide the decision function directly by training the perceptron. 

Cons of MLP 

1. Due to the hard-limit transfer function, the perceptrons can only give 
outputs in the form of 0 and 1. 

2. While updating the weights in layers, the MLP network may be stuck in 
a local minimum which can hamper accuracy. 

RADIAL BASIS FUNCTION NETWORKS (RBFNS) 

As the name suggests, it is based on the Radial basis function (RBF) activation 
function. The model training process requires slightly less time using RBFN than 
MLP. 



16 Deep Learning Using Python 
 
 

How do RBFN deep learning algorithms work? 

A straightforward type of RBFN is a three-layer feedforward neural network 
with an input layer, a hidden layer consisting of several RBF nonlinear activation 
units, and a linear output layer that acts as a summation unit to give the final output. 

RBFN uses trial and error to determine the structure of the network. That is 
done in two steps - 

• In the first stage, the centers of the hidden layer using an unsupervised 
learning algorithm (k-means clustering) are determined. 

• In the next step, the weights with linear regression are determined. Mean 
Squared Error (MSE) is used to determine the error and the weights are 
tweaked accordingly to minimize MSE. 

Applications of RBFN 

RBFNs are used to analyze stock market prices and also forecast sales prices 
in Retail industries because of their ability to work on time-series-based data. 
Other applications include Speech recognition, time-series analysis, image 
recognition, adaptive equalization, medical diagnosis, etc. 

Pros of RBFN 

1) The training process is faster when compared to MLP, as there is no 
backpropagation involved. 

2) It is easy to interpret the roles of the hidden layer nodes compared to MLP. 

Cons of RBFN 

Although we have seen that the training is faster in the RBF network, 
classification takes time as compared to Multilayer Perceptrons. 

The reason is that every node in the hidden layer must compute the RBF 
function for the input sample vector during classification. 

It is easy to interpret the roles of the hidden layer nodes compared to MLP. 

We want our model to recognize the objects irrespective of what surface they 
are upon and their position. 

In CNN, the processing of data involves breaking the images into many 
numbers of overlapping tiles instead of feeding entire images into our network. 
And then, we use a technique called a sliding window over the whole original 
image and save the results as a separate tiny picture tile. The Sliding window is 
a kind of brute force solution where we scan all around for a given image to detect 
the object for all possible sections, each section at a time, until we get the expected 
object. 
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How do CNN deep learning algorithms work? 

There are three basic building blocks of a CNN 

1. Convolutional layers 

2. Pooling layers 

3. Full-Connected Layers 

Convolutional Layer – It is the most significant building block of convolutional 
neural networks. A set of filters(kernels) are used in the layer‘s parameters that 
can be visualized as neurons of the layers. They have weighted inputs and based 
on the input size (a fixed square) that is also referred to as a receptive field; they 
provide the output. These filters, when applied to the input image, generate feature 
maps. It is the output of one filter that is applied to the previous layer. Moving 
one image pixel at a time, a given filter is drawn across the entire previous layer. 
For each position, a particular neuron is activated, and the output is collected in 
a feature map. 

To avoid losing the arrangement of the original image tiles, we save the result 
obtained after processing each tile into a grid with the same tiles‘ arrangement 
as the original image. 

In the convolution layer, the output is a grid array huge in size. To reduce 
the size of this array, we use an algorithm max pooling for down-sampling. The 
basic idea is to keep only the most significant input tile from the array. 

Full-connected Network – The array is only a bunch of numerical values, 
so we can input them into a neural network that is fully connected (all neurons 
are connected). CNN most commonly uses ReLU as the activation function. 

APPLICATIONS OF CNN 

Facebook, Instagram, social media sites, etc., use CNNs for face detection and 
recognition. So when trying to tag your friend in your post, you are using CNN! 

Other applications include Video analysis, Image recognition, Natural language 
processing, Forecasting, etc. 

Pros of CNN 

CNN results are more accurate, particularly for image/object recognition use 
cases, compared to other algorithms. 

Cons of CNN 

High computation power is required for training CNNs. So, they are not cost- 
effective. 
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RECURRENT NEURAL NETWORKS (RNNS) 

Have you noticed when you start typing something, Google automatically 
completes the sentence for you! Now, if you are thinking about how it works, the 
secret is RNN. Recurrent Neural Networks have directed cycles among the 
interconnected nodes. They use their memory to process the next sequence of 
inputs to implement the auto-complete feature kind of functionalities. RNNs can 
take a series of inputs with no limit on their size, making them unique. 

The Basic Structure of RNN 

The above figure shows the different steps for each time state for an RNN. 
RNNs do not only account for the weights of hidden units to determine the output 
but also use the information learned from their prior inputs. RNNs are a special 
type of deep neural network that can remember those characters because of their 
internal memory. An output is produced, which is copied and provided back to 
the deep neural network like a loop. That is why the input could produce a different 
output based on previous inputs in the connected layers. 

Let us understand this by an example - 

Example - Imagine if you have built a feed-forward network that takes words 
as input and processes the word character by character. You pass the word ProjectPro, 
and by the time you reach the character ―o‖, it would have already forgotten the 
last characters ―P,‖ ―r‖, and ―o‖. 

Applications of RNN 

Google, Search Engines, and Web Browsers extensively use RNN to auto- 
complete words and sentences. Other applications are Text Detection and 
Recognition, Analyzing video frames, etc. 

Pros of RNN 

The ability of RNN models to remember information throughout the training 
period plays a pivotal role in time series prediction. 

Cons of RNN 

1. The computation is time-taking because of its recurrent nature. 

2. Hard to process long sequences in the training data set, mainly when we 
use ReLU or tanh as activation functions. 

LONG SHORT-TERM MEMORY NETWORKS (LSTMS) 

LSTMs are a special kind of RNN and are highly capable of learning long- 
term dependencies. Let‘s try to understand long-term dependencies by an example. 



An Introduction to Deep Learning 19 
 

 

 

Suppose you have built a model to predict the next word based on the previous 
ones. Assume you are trying to predict the last word in the sentence, ―the sun rises 
in the east,‖ we don‘t need any further context, and obviously the following term 
will be east. In these types of cases, where there is not much gap between the 
relevant information and the place where it‘s needed, RNNs can learn and predict 
the output easily. But if we have a sentence like, ―I am born in India. I speak fluent 
Hindi‖. This kind of prediction requires some context from the previous sentence 
about where a person was born, and RNNs might not be able to learn and connect 
the information in such cases. 

How do LSTM deep learning algorithms work? 

The cell state and hidden state are transferred to the next cell. As the name 
suggests, memory blocks remember things, and the changes to these memory 
blocks are done through mechanisms referred to as gates. 

The key to LSTMs is the cell state (the horizontal line at the top, which runs 
through in the diagram). The key to LSTMs is the cell state (the horizontal line 
at the top which runs through in the diagram). 

Step 1: - LSTM decides what information should be kept intact and what 
should be thrown away from the cell state. The sigmoid layer is responsible for 
making this decision. 

Step 2: - LSTM decides what new information one should keep and replaces 
the irrelevant one identified in step 1 - the tanh and the sigmoid play an important 
role in identifying relevant information. 

Step 3: - The output is determined with the help of the cell state that will 
now be a filtered version because of the applied sigmoid and tanh functions. 

Applications 

Anomaly detection in network traffic data or IDSs (intrusion detection systems), 
Time-series forecasting, Auto-completion, text and video analysis, and Caption 
generation. 

Pros of LSTM 

LSTMs when compared to conventional RNNs, are very handy in modeling 
the chronological sequences and long-range dependencies. 

Cons of LSTM 

1. High computation and resources are required to train the LSTM model, 
and it is also a very time-consuming process. 

2. They are prone to overfitting. 
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RESTRICTED BOLTZMANN MACHINES (RBMS) 

RBM is one of the oldest algorithm in deep learning invented in 1986 by 
Geoffrey Hinton. I bet you would have noticed how YouTube recommends videos 
similar to what you have watched recently. Also, if you have watched a web series 
or movie on Netflix, you will start getting a lot of recommendations related to 
them. They use a technique known as collaborative filtering that uses RBMs. 

How do RBM deep learning algorithms work? 

RBM is one of the simplest deep learning algorithms and has a basic structure 
with just two layers- 

1. (Visible) Input layer 

2. Hidden layer 

The input x is multiplied by the respective weight(w) at each hidden node. 
A single input x can have 8 weights altogether (2 input nodes x 4 hidden nodes). 
The hidden nodes receive the inputs multiplied by their respective weights and 
a bias value. The result is passed through an activation function to the output layer 
for reconstruction. RBMs compare this reconstruction with the original input to 
determine the quality of the result. If the quality of the result is not good, the 
weights are updated, and a new reconstruction is built. 

Applications 

Netflix, Prime Video, and Streaming apps provide recommendations to users 
based on their watching patterns using the RBM algorithm. Feature extraction in 
pattern recognition, Recommendation Engines, Classification problems, Topic 
modeling, etc. 

Pros of RBM 

1. RBMs can be pre-trained in a completely unsupervised way as the learning 
algorithm can efficiently use extensive unlabelled data. 

2. They don‘t require high computation and can encode any distribution. 

Cons of RBM 

1. Calculation of energy gradient function while training is challenging. 

2. Adjusting weights using the CD-k algorithm is not as easy as 
backpropagation. 

SELF ORGANIZING MAPS (SOMS) 

Imagine you are working with a dataset with hundreds of features, and you 
want to visualize your data to understand the correlation between each feature. 
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It is not possible to imagine it using scatter or pair plots. Here comes SOMs. It 
reduces the data‘s dimension (less relevant features are removed) and helps us 
visualize the distribution of feature values. 

How does the SOM deep learning algorithm work? 

SOMs group similar data items together by creating a 1D or 2D map. Similar 
to the other algorithms, weights are initialized randomly for each node. At each 
step, one sample vector x is randomly taken from the input data set and the 
distances between x and all the other vectors are computed. 

A Best-Matching Unit (BMU) closest to x is selected after voting among all 
the other vectors. Once BMU is identified, the weight vectors are updated, and 
the BMU and its topological neighbors are moved closer to the input vector x in 
the input space. This process is repeated until we get the expected output. 

For our example, the program would first select a color from an array of 
samples, such as red, and then search the weights for those red locations. The 
weights surrounding those locations are red, and then the next color, blue is 
chosen, and the process continues. 

Applications 

Image analysis, fault diagnosis, process monitoring and control, etc. SOMs 
are used for 3D modeling human heads from stereo images because of their ability 
to generate powerful visualizations, and they are extensively valuable for the 
healthcare sector for creating 3D charts. 

Pros of SOMs 

1. We can easily interpret and understand the data using SOM. 

2. Using dimensionality reduction further makes it much simpler to check 
for any similarities within our data. 

Cons of SOMs 

1. SOM requires neuron weights to be necessary and sufficient to cluster the 
input data. 

2. If, while training SOM, we provide less or extensively more data, we may 
not get the informative or very accurate output. 

GENERATIVE ADVERSARIAL NETWORKS (GANS) 

It is an unsupervised learning algorithm capable of automatically discovering 
and learning the patterns in the data. GANs then generate new examples that 
resemble the original dataset. 
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How do GAN deep learning algorithms work? 

GANs consist of two neural networks. 

• Generator Network - First is a generator neural network that generates 
new examples. 

• Discriminator Network – It is responsible for evaluating the generated 
examples and whether they belong to the actual training dataset. 

Let us understand this by an example. Consider a currency note checking 
machine. The machine is responsible for checking if the notes are fake or real. 
The Generator network will try to create counterfeit notes and send them to the 
Discriminator. The Discriminator will take in both the real (input training data) 
and the fake notes and return a value between 0 to 1. This value is a probability 
where 1 represents completely genuine notes and 0 represents fake notes. 

Both Generator and Discriminator will try to outperform each other and get 
trained at the same time. 

Applications 

GANs are widely used in the gaming industry for 3D object generations. They 
are also used for editing images, generating cartoon characters, etc. 

They are also used for illustrations for novels, articles, etc. 

Pros of GANs 

1. GANs can learn any data‘s internal representation (messy and complex 
distributions). They can be trained effectively using unlabeled data so they 
can quickly produce realistic and high-quality results. 

2. They can recognize objects as well as can calculate the distance between 
them. 

Cons of GANs 

1. As they generate new data from original data, there is no such evaluation 
metric to judge the accuracy of output. 

2. High computation and time required for model training. 

AUTOENCODERS DEEP LEARNING ALGORITHM 

Autoencoders are unsupervised algorithms very similar to Principal Component 
Analysis (PCA) in machine learning. They are used to convert multi-dimensional 
data into low-dimensional data. And if we want the original data, we can regenerate 
it back. 
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A simple example is -Suppose your friend has asked you to share a software 
you have saved on your computer. The folder size of that software is close to 1 
GB. If you directly upload this whole folder to your Google drive, it will take 
a lot of time. But if you compress it, then the data size will reduce, and you can 
upload it easily. Your friend can directly download this folder, extract the data, 
and get the original folder. 

In the above example, the original folder is the input, the compressed folder 
is encoded data, and when your friend extracts the compressed folder, it is 
decoding. 

How do autoencoders work? 

There are 3 main components in Autoencoders – 

1. Encoder – The encoder compresses the input into a latent space 
representation which can be reconstructed later to get the original input. 

2. Code – This is the compressed part (latent space representation) that is 
obtained after encoding. 

3. Decoder – The decoder aims to reconstruct the code to its original form. 
The reconstruction output obtained may not be as accurate as the original 
and might have some loss. 

The code layer present between the encoder and decoder is also referred to 
as Bottleneck. It is used to decide which aspects of input data are relevant and 
what can be neglected. The bottleneck is a very significant layer in our network. 
Without it, the network could easily learn to memorize the input values by passing 
them along through the network. 

Applications 

Colouring of images, image compression, denoising, etc. 

They are used in the healthcare industry for medical imaging (technique and 
process of imaging the human body‘s interior for performing clinical analysis) Eg 
- breast cancer detection. 

Pros of Autoencoders 

Using multiple encoder and decoder layers reduces the computational cost of 
representing some functions to a certain extent. 

Cons of Autoencoders 

1. It is not as efficient as GANs when reconstructing images as for complex 
images,it usually does not work well. 

2. We might lose essential data from our original input after encoding. 
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DEEP BELIEF NETWORKS 

A deep belief network (DBN) is built by appending several Restricted Boltzmann 
Machines (RBM) layers. Each RBM layer can communicate with both the 
previous and subsequent layers. 

DBNs are pre-trained by using the Greedy algorithm. It uses a layer-by-layer 
approach to learn all the generative weights and the top-down approaches. The 
weights associated determine how all variables in one layer rely on the other 
variables in the above layer. 

How do deep belief networks work? 

• DBNs are pre-trained by using the Greedy algorithm. They use a layer- 
by-layer approach to learn all the generative weights and the top-down 
approaches. The weights associated determine how all variables in one 
layer rely on the other variables in the above layer. 

• Several steps of Gibbs sampling (for obtaining a sequence of observations 
approximated from a specified multivariate probability distribution when 
direct sampling is difficult) are run on the top two hidden layers of the 
network. The idea is to draw a sample from the RBM defined by the top 
two hidden layers. 

• In the next step, we use a single pass of ancestral sampling through the 
rest of the model to draw a sample from the visible units. 

• A single, bottom-up pass can conclude learning the values of the latent 
variables in every layer. 

• The Greedy pre-training starts with an observed data vector in the lowest 
layer. Then it uses the generative weights in the opposite direction with 
the help of fine-tuning. 

Applications 

• Variational Autoencoder(VAE), a type of autoencoder is used to generate 
anime characters in the entertainment/gaming industry 

• To recognize, cluster, and create images, video sequences, and motion- 
capture data. 

Pros of DBNs 

1. They can work with even a tiny labeled dataset. 

2. DBNs provide robustness in classification. (view angle, size, position, 
color, etc.) 
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Cons of DBNS 

Hardware requirements are high to process inputs. 
 
 

 
 

 
 

Image processing is a very useful technology and the demand from the industry 
seems to be growing every year. Historically, image processing that uses machine 
learning appeared in the 1960s as an attempt to simulate the human vision system 
and automate the image analysis process. As the technology developed and improved, 
solutions for specific tasks began to appear. 

The rapid acceleration of computer vision in 2010, thanks to deep learning 
and the emergence of open source projects and large image databases only increased 
the need for image processing tools. 

Currently, many useful libraries and projects have been created that can help 
you solve image processing problems with machine learning or simply improve 
the processing pipelines in the computer vision projects where you use ML. 

Frameworks and libraries 

In theory, you could build your image processing application from scratch, 
just you and your computer. But in reality, it‘s way better to stand on the shoulders 
of giants and use what other people have built and extend or adjust it where 
needed. 

This is where libraries and frameworks come in and in image processing, 
where creating efficient implementations is often a difficult task this is even more 
true. 

So, let me give you my list of libraries and frameworks that you can use in 
your image processing projects: 

OpenCV 

Open-source library of computer vision and image processing algorithms. 

Designed and well optimized for real-time computer vision applications. 

Designed to develop open infrastructure. 

Functionality: 

• Basic data structures 

• Image processing algorithms 

• Basic algorithms for computer vision 
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• Input and output of images and videos 

• Human face detection 

• Search for stereo matches (FullHD) 

• Optical flow 

• Continuous integration system 

• CUDA-optimized architecture 

• Android version 

• Java API 

• Built-in performance testing system 

• Cross-platform 

TensorFlow 

Open-source software library for machine learning. 

Created to solve problems of constructing and training a neural network with 
the aim of automatically finding and classifying images, reaching the quality of 
human perception. 

Functionality: 

• Work on multiple parallel processors 

• Calculation through multidimensional data arrays – tensors 

• Optimization for tensor processors 

• Immediate model iteration 

• Simple debugging 

• Own logging system 

• Interactive log visualizer 

PyTorch 

Open-source machine learning platform. 

Designed to speed up the development cycle from research prototyping to 
industrial development. 

Functionality: 

• Easy transition to production 

• Distributed learning and performance optimization 

• Rich ecosystem of tools and libraries 

• Good support for major cloud platforms 
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• Optimization and automatic differentiation modules 

Caffe 

A deep learning framework focused on solving the problem of image 
classification and segmentation. 

Functionality: 

• Computation using blobs – multidimensional data arrays used in parallel 
computing 

• Model definition and configuration optimization, no hard coding 

• Easy switching between CPU and GPU 

• High speed of work 

EmguCV 

Cross platform .Net addon for OpenCV for image processing. 

Functionality: 

• Working with .NET compatible languages – C #, VB, VC ++, IronPython, 
etc. 

• Compatible with Visual Studio, Xamarin Studio and Unity 

• Can run on Windows, Linux, Mac OS, iOS, and Android 

VXL 

A collection of open-source C ++ libraries. 

Functionality: 

• Load, save, and modify images in many common file formats, including 
very large images 

• Geometry for points, curves and other elementary objects in 1, 2 or 3 
dimensions 

• Camera geometry 

• Restoring structure from movement 

• Designing a graphical user interface 

• Topology 

• 3D images 

GDAL 

Library for reading and writing raster and vector geospatial data formats. 
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Functionality: 

• Getting information about raster data 

• Convert to various formats 

• Data re-projection 

• Creation of mosaics from rasters 

• Creation of shapefiles with raster tile index 

MIScnn 

Framework for 2D/3D Medical Image Segmentation. 

Functionality: 

• Creation of segmentation pipelines 

• Preliminary processing 

• Input Output 

• Data increase 

• Patch analysis 

• Automatic assessment 

• Cross validation 

Tracking 

JavaScript library for computer vision. 

Functionality: 

• Color tracking 

• Face recognition 

• Using modern HTML5 specifications 

• Lightweight kernel (~ 7 KB) 

WebGazer 

Library for eye tracking. 

Uses a webcam to determine the location of visitors‘ gaze on the page in real- 
time (where the person is looking). 

Functionality: 

• Self-calibration of the model, which observes the interaction of Internet 
visitors with a web page, and trains the display between eye functions and 
position on the screen 
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• Real time look prediction in most modern browsers 

• Easy integration with just a few lines of JavaScript 

• Ability to predict multiple views 

• Work in the browser on the client side, without transferring data to the 
server 

Marvin 

A framework for working with video and images. 

Functionality: 

• Capture video frames 

• Frame processing for video filtering 

• Multi-threaded image processing 

• Support for plugin integration via GUI 

• Feature extraction from image components 

• Generation of fractals 

• Object tracking 

• Motion Detection 

Kornia 

Library for computer vision in PyTorch. 

Functionality: 

• Image conversion 

• Epipolar geometry 

• Depth estimation 

• Low-level image processing (such as filtering and edge detection directly 
on tensors) 

• Color correction 

• Feature recognition 

• Image filtering 

• Border recognition 

Datasets 

You cannot build machine learning models without the data. This is especially 
important in image processing applications where adding more labeled data to your 
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training dataset usually gets you bigger improvements than state-of-the-art network 
architectures or training methods. 

With that in mind, let me give you a list of image datasets that you can use 
in your projects: 

Diversity in Faces 

A dataset designed to reduce the bias of algorithms. 

A million labeled images of faces of people of different nationalities, ages and 
genders, as well as other indicators – head size, face contrast, nose length, forehead 
height, face proportions, etc. and their relationships to each other. 

FaceForencis 

Dataset for recognizing fake photos and videos. 

A set of images (over half a million) created using the Face2Face, FaceSwap 
and DeepFakes methods. 

1000 videos with faces made using each of the falsification methods. 

YouTube-8M Segments 

Dataset of Youtube videos, with marked up content in dynamics. 

Approximately 237 thousand layouts and 1000 categories. 

SketchTransfer 

Dataset for training neural networks to generalize 

The data consists of real-world tagged images and unlabeled sketches. 

DroneVehicle 

Dataset for counting objects in drone images. 

15,532 RGB drone shots, there is an infrared shot for each image. 

Object marking is available for both RGB and infrared images. 

The dataset contains directional object boundaries and object classes. 

In total, 441,642 objects were marked in the dataset for 31,064 images. 

Waymo Open Dataset 

Dataset for training autopilot vehicles. 

Includes videos of driving with marked objects. 

3,000 driving videos totaling 16.7 hours, 600,000 frames, about 25 million 
3D object boundaries and 22 million 2D object boundaries. 
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To eliminate the problem of uniformity of videos, the recordings were made 
under various conditions. Video options include weather, pedestrians, lighting, 
cyclists, and construction sites. Diversity in the data increases the generalization 
ability of the models that are trained on it. 

ImageNet-A 

A dataset of images that the neural network cannot classify correctly. Based 
on the test results, the models predicted objects from the dataset with an accuracy 
of 3%. Contains 7.5 thousand images, the peculiarity of which is that they contain 
natural optical illusions. 

Designed to study the stability of neural networks to ambiguous images of 
objects, which will help to increase the generalizing ability of models. 

READY-MADE SOLUTIONS 

Ready-made solutions are open-source repositories and software tools that are 
built to solve particular, often specialized tasks. By using those solutions you can 
―outsource‖ your model building or image processing pipeline to a tool that does 
it with one(ish) click or one command execution. With that in mind let me give 
you my list. 

MobileNet 

A set of computer vision algorithms optimized for mobile devices. 

Functionality: 

• Facial analysis 

• Determination of location by environment 

• Recognition directly on the smartphone 

• Low latency and low power consumption 

Fritz 

A machine learning platform for iOS and Android developers. 

Functionality: 

• Runs directly on mobile devices, no data transfer 

• Porting models to other frameworks and updating models in applications 
without having to release a new version 

Computer Vision Annotation Tool 

Functionality: 

• Shapes for marking – rectangles, polygons, polylines, points 
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• No need for installation 

• Ability to work together 

• Automation of the marking process 

• Support for various annotation scripts 

3D-BoNet 

Segmentation of objects in 3D images. 

Solving the instance segmentation problem is 10 times computationally better 
than other existing approaches. 

End-to-end neural network that accepts a 3D image as input, and gives out 
the boundary of recognized objects at the output. 

Reasoning-RCNN 

Object recognition from thousands of categories. 

Detection of hard-to-see objects in the image. 

An architecture that allows you to work on top of any existing detector. 

STEAL 

Detection of object boundaries on noisy data. 

Increase the precision of marked object boundaries. 

An additional layer to any semantic editor and loss function. 

VQ-VAE-2 

Generation of realistic versatile images. 

Some fix for the disadvantages of using GAN for image generation. 

Communication system of encoder and decoder on two levels. 

CorrFlow 

Automatic marking of videos. Distribution of markup from one image to the 
entire video. Based on a self-supervised model. 

FUNIT 

Replacing objects with others. 

Converting object images from one class to another with a minimum amount 
of training data. 

Based on GAN architecture. 
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Neural Network in Deep 

  Learning  

 
As explained above, deep learning is a sub-field of machine learning dealing 

with algorithms inspired by the structure and function of the brain called artificial 
neural networks. We will explain here how we can construct a simple neural 
network from the example. In the above example, Logistic regression is the 
technique to be used to separate data using single line. But most of the time we 
cannot classify the dataset using a single line with high accuracy. 
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How about if we separate, data points with two lines. 
 
 
 

 
 

In this case, we say anything below blue line will be ―No(not passed)‖ and 
above it will be ―Yes(passed)‖. Similarly, we say anything on the left side will 
be ―No(not passed)‖ and on the right side ―Yes(passed)‖. 

 

As we have neurons in nervous system, we can define each line as one neuron 
and connected to next layer neurons along with neurons in the same layer. In this 
case we have two neurons that represents the two lines. The above picture is an 
example of simple neural network where two neurons accept that input data and 
compute yes or no based on their condition and pass it to the second layer neuron 
to concatenate the result from previous layer. For this specific example test score 
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1 and grade 8 input, the output will be ―Not passed‖ which is accurate, but in 
logistic regression out we may get as ―passed‖. 

To summarise this, using multiple neurons in different layers, essentially we 
can increase the accuracy of the model. This is the basis of neural network. 

The diagram below shows a simple network. The linear combination of the 
weights, inputs, and bias form the input h, which passes through the activation 
function f(h), giving the final output, labeled y. 

The good fact about this architecture, and what makes neural networks possible, 
is that the activation function, f(h) can be any function, not just the step function 
shown earlier. 

For example, if you let f(h)=h, the output will be the same as the input. Now 
the output of the network is 

 

 
This equation should be familiar to you, it‘s the same as the linear regression 

model! 

Other activation functions you‘ll see are the logistic (often called the sigmoid), 
tanh, and softmax functions. 

sigmoid(x)=1/(1+e‖x) 
The sigmoid function is bounded between 0 and 1, and as an output can be 

interpreted as a probability for success. It turns out, again, using a sigmoid as the 
activation function results in the same formulation as logistic regression. 

We can finally say output of the simple neural network based on sigmoid as 
below: 
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The fundamental block of deep learning is artificial neuron i.e. it takes a 
weighted aggregate of inputs, applies a function and gives an output. The very 
first step towards the artificial neuron was taken by Warren McCulloch and Walter 
Pitts in 1943 inspired by neurobiology, created a model known as McCulloch-Pitts 
Neuron. 

MOTIVATION — BIOLOGICAL NEURON 

The inspiration for the creation of an artificial neuron comes from the biological 
neuron. 

 

 
Fig : Biological Neuron — Padhai Deep Learning 

In a simplistic view, neurons receive signals and produce a response. The 
general structure of a neuron. Dendrites are the transmission channels to bring 
inputs from another neuron or another organ. Synapse — Governs the strength 
of the interaction between the neurons, consider it like weights we use in neural 
networks. Soma — The processing unit of the neuron. 

At the higher level, neuron takes a signal input through the dendrites, process 
it in the soma and passes the output through the axon. 
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McCulloch-Pitts Neuron Model 

MP Neuron Model introduced by Warren McCulloch and Walter Pitts in 1943. 
MP neuron model is also known as linear threshold gate model. 

Mathematical Model 
 

Fig : Simple representation of MP Neuron Model 

The function (soma) is actually split into two parts: g — The aggregates 
the inputs to a single numeric value and the function f produces the output 
of this neuron by taking the output of the g as the input i,e.. a single value 
as its argument. 

The function f will output the value 1 if the aggregation performed by the 
function g is greater than some threshold else it will return 0. 

The inputs x1, x2, ….. xn for the MP Neuron can only take boolean values 
and the inputs can be inhibitory or excitatory. Inhibitory inputs can have maximum 
effect on the decision-making process of the model. In some cases, inhibitory 
inputs can influence the final outcome of the model. 
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Fig: Mathematical representation 

For example, I can predict my own decision of whether I would like to 
watch a movie in a nearby IMAX theater tomorrow or not using an MP Neuron 
Model. 

All the inputs to the model are boolean i.e., [0,1] we can see that output from 
the model will also be boolean. (0 — Not going to movie, 1 — going to the movie) 

Inputs for the above problem could be 

• x1 — IsRainingTomorrow (Whether it‘s going to rain tomorrow or not) 

• x2 — IsScifiMovie (I like science fiction movies) 

• x3 — IsSickTomorrow (Whether I am going to be sick tomorrow or not 
depends on any symptoms, eg: fever) 

• x4 — IsDirectedByNolan (Movie directed by Christopher Nolan or not.) 
etc…. 

In this scenario, if x3 — IsSickTomorrow is equal to 1, then the output 
will always be 0. If I am not feeling well on the day of the movie then no 
matter whoever is the actor or director of the movie, I wouldn‘t be going for 
a movie. 

Loss Function 

Let‘s take an example of buying a phone based on some features of the 
features in the binary format. { y — 0: Not buying a phone and y — 1: buying 
a phone} 

For each particular phone (observation) with a certain threshold value b, using 
the MP Neuron Model, we can predict the outcome using a condition that the 
summation of the inputs is greater than b then the predicted value will be 1 or 
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else it will be 0. The loss for the particular observation will be squared difference 
between the Yactual and Ypredicted. 

Fig: Buying a phone 
 

Fig: MP Neuron Model for Buying a phone 

Similarly, for all the observations, calculate the summation of the squared 
difference between the Yactual and Ypredicted to get the total loss of the model 
for a particular threshold value b. 

 

 
Learning Algorithm 

Fig: Loss of the Model 

The purpose of the learning algorithm is to find out the best value for the 
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parameter b so that the loss of the model will be minimum. In the ideal scenario, 
the loss of the model for the best value of b would be zero. 

For n features in the data, the summation we are computing can take only 
values between 0 and n because all of our inputs are binary (0 or 1). 0 — indicates 
all the features are off and 1 — indicates all the features are on. Therefore the 
different values the threshold b can take will also vary from 0 to n. As we have 
only one parameter with a range of values 0 to n, we can use the brute force 
approach to find the best value of b. 

• Initialize the b with a random integer [0,n] 

• For each observation 

• Find the predicted outcome, by using the formula 

Calculate the summation of inputs and check whether its greater than or equal 
to b. If its greater than or equal to b, then the predicted outcome will be 1 or else 
it will be 0. 

• After finding the predicting outcome compute the loss for each observation. 

• Finally, compute the total loss of the model by summing up all the individual 
losses. 

• Similarly, we can iterate over all the possible values of b and find the total 
loss of the model. Then we can choose the value of b, such that the loss 
is minimum. 

MODEL EVALUATION 

After finding the best threshold value b from the learning algorithm, we can 
evaluate the model on the test data by comparing the predicted outcome and the 
actual outcome. 

Fig: Predictions on the test data for b = 5 

For evaluation, we will calculate the accuracy score of the model. 



Neural Network in Deep Learning 41 
 

 

 

 

 
 

Fig: Accuracy metric 

For the above-shown test data, the accuracy of the MP neuron model = 75%. 
 
 

  
 

This is the best part of the post according to me. Lets start with the OR 
function. 

OR Function 

We already discussed that the OR function‘s thresholding parameter theta is 
1, for obvious reasons. The inputs are obviously boolean, so only 4 combinations 
are possible — (0,0), (0,1), (1,0) and (1,1). Now plotting them on a 2D graph and 
making use of the OR function‘s aggregation equation 

i.e., x_1 + x_2 e” 1 using which we can draw the decision boundary as shown 
in the graph below. Mind you again, this is not a real number graph. 

We just used the aggregation equation i.e., x_1 + x_2 =1 to graphically show 
that all those inputs whose output when passed through the OR function M-P 
neuron lie ON or ABOVE that line and all the input points that lie BELOW that 
line are going to output 0. 

Voila!! The M-P neuron just learnt a linear decision boundary! The M-P 
neuron is splitting the input sets into two classes — positive and negative. Positive 
ones (which output 1) are those that lie ON or ABOVE the decision boundary 
and negative ones (which output 0) are those that lie BELOW the decision 
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boundary. Lets convince ourselves that the M-P unit is doing the same for all the 
boolean functions by looking at more examples (if it is not already clear from the 
math). 

AND Function 
 

In this case, the decision boundary equation is x_1 + x_2 =2. Here, all the 
input points that lie ON or ABOVE, just (1,1), output 1 when passed through the 
AND function M-P neuron. It fits! The decision boundary works! 

Tautology 
 

Too easy, right? 

I think you get it by now but what if we have more than 2 inputs? 

OR Function With 3 Inputs 

Lets just generalize this by looking at a 3 input OR function M-P unit. In this 
case, the possible inputs are 8 points — (0,0,0), (0,0,1), (0,1,0), (1,0,0), (1,0,1),… 
you got the point(s). We can map these on a 3D graph and this time we draw a 
decision boundary in 3 dimensions. 
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―Is it a bird? Is it a plane?‖ 

Yes, it is a PLANE! 

The plane that satisfies the decision boundary equation x_1 + x_2 + x_3 = 

1 is shown below: 
 

Take your time and convince yourself by looking at the above plot that all 
the points that lie ON or ABOVE that plane (positive half space) will result in 
output 1 when passed through the OR function M-P unit and all the points that 
lie BELOW that plane (negative half space) will result in output 0. 

Just by hand coding a thresholding parameter, M-P neuron is able to conveniently 
represent the boolean functions which are linearly separable. 
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Linear separability (for boolean functions): There exists a line (plane) such 

that all inputs which produce a 1 lie on one side of the line (plane) and all inputs 

which produce a 0 lie on other side of the line (plane). 

Limitations Of M-P Neuron 

• What about non-boolean (say, real) inputs? 

• Do we always need to hand code the threshold? 

• Are all inputs equal? What if we want to assign more importance to some 
inputs? 

• What about functions which are not linearly separable? Say XOR function. 

I hope it is now clear why we are not using the M-P neuron today. Overcoming 
the limitations of the M-P neuron, Frank Rosenblatt, an American psychologist, 
proposed the classical perception model, the mighty artificial neuron, in 1958. It 
is more generalized computational model than the McCulloch-Pitts neuron where 
weights and thresholds can be learnt over time. 

More on perceptron and how it learns the weights and thresholds etc. in my 
future posts. 

 
 

    
 

 
 

Dendrite: Receives signals from other neurons 

Soma: Processes the information 

Axon: Transmits the output of this neuron 

Synapse: Point of connection to other neurons 
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Basically, a neuron takes an input signal (dendrite), processes it like the CPU 
(soma), passes the output through a cable like structure to other connected neurons 
(axon to synapse to other neuron‘s dendrite). Now, this might be biologically 
inaccurate as there is a lot more going on out there but on a higher level, this is 
what is going on with a neuron in our brain — takes an input, processes it, throws 
out an output. 

Our sense organs interact with the outer world and send the visual and sound 
information to the neurons. Let‘s say you are watching Friends. Now the information 
your brain receives is taken in by the ―laugh or not‖ set of neurons that will help 
you make a decision on whether to laugh or not. Each neuron gets fired/activated 
only when its respective criteria (more on this later) is met like shown below. 

Not real. 

Of course, this is not entirely true. In reality, it is not just a couple of neurons 
which would do the decision making. There is a massively parallel interconnected 
network of 10¹¹ neurons (100 billion) in our brain and their connections are not 
as simple as I showed you above. It might look something like this: 

Still not real but closer. 

Now the sense organs pass the information to the first/lowest layer of neurons 
to process it. And the output of the processes is passed on to the next layers in 
a hierarchical manner, some of the neurons will fire and some won‘t and this 
process goes on until it results in a final response — in this case, laughter. 

This massively parallel network also ensures that there is a division of work. 
Each neuron only fires when its intended criteria is met i.e., a neuron may perform 
a certain role to a certain stimulus, as shown below. 
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Division of work 

It is believed that neurons are arranged in a hierarchical fashion (however, 
many credible alternatives with experimental support are proposed by the scientists) 
and each layer has its own role and responsibility. To detect a face, the brain could 
be relying on the entire network and not on a single layer. 

 

Sample illustration of hierarchical processing. Credits: Mitesh M. Khapra‘s 
lecture slides. Now that we have established how a biological neuron works, lets 
look at what McCulloch and Pitts had to offer. 

Note: My understanding of how the brain works is very very very limited. The 

above illustrations are overly simplified. 

McCulloch-Pitts Neuron 

The first computational model of a neuron was proposed by Warren MuCulloch 
(neuroscientist) and Walter Pitts (logician) in 1943. 
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This is where it all began.. 

It may be divided into 2 parts. The first part, g takes an input (ahem dendrite 
ahem), performs an aggregation and based on the aggregated value the second part, 
f makes a decision. 

Lets suppose that I want to predict my own decision, whether to watch a 
random football game or not on TV. The inputs are all boolean i.e., {0,1} and my 
output variable is also boolean {0: Will watch it, 1: Won‘t watch it}. 

• So, x_1 could be isPremierLeagueOn (I like Premier League more) 

• x_2 could be isItAFriendlyGame (I tend to care less about the friendlies) 

• x_3 could be isNotHome (Can‘t watch it when I‘m running errands. Can 
I?) 

• x_4 could be isManUnitedPlaying (I am a big Man United fan. GGMU!) 
and so on. 

These inputs can either be excitatory or inhibitory. Inhibitory inputs are 
those that have maximum effect on the decision making irrespective of other 
inputs i.e., if x_3 is 1 (not home) then my output will always be 0 i.e., the neuron 
will never fire, so x_3 is an inhibitory input. 

Excitatory inputs are NOT the ones that will make the neuron fire on their 
own but they might fire it when combined together. Formally, this is what is going 
on: 
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We can see that g(x) is just doing a sum of the inputs — a simple 
aggregation. 

And theta here is called thresholding parameter. 

For example, if I always watch the game when the sum turns out to be 2 or 
more, the theta is 2 here. 

This is called the Thresholding Logic. 

Boolean Functions Using M-P Neuron 

So far we have seen how the M-P neuron works. Now lets look at how 
this very neuron can be used to represent a few boolean functions. 

Mind you that our inputs are all boolean and the output is also boolean so 
essentially, the neuron is just trying to learn a boolean function. 

A lot of boolean decision problems can be cast into this, based on 
appropriate input variables— like whether to continue reading this post, 
whether to watch Friends after reading this post etc. can be represented by 
the M-P neuron. 

M-P Neuron: A Concise Representation 
 

This representation just denotes that, for the boolean inputs x_1, x_2 and x_3 

if the g(x) i.e., sum e” theta, the neuron will fire otherwise, it won‘t. 
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AND Function 
 

An AND function neuron would only fire when ALL the inputs are ON i.e., 
g(x) e‖ 3 here. 

OR Function 
 
 

 
I believe this is self explanatory as we know that an OR function neuron would 

fire if ANY of the inputs is ON i.e., g(x)  1 here. 

A Function With An Inhibitory Input 
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Now this might look like a tricky one but it‘s really not. Here, we have an 
inhibitory input i.e., x_2 so whenever x_2 is 1, the output will be 0. 

Keeping that in mind, we know that x_1 AND !x_2 would output 1 only when 
x_1 is 1 and x_2 is 0 so it is obvious that the threshold parameter should be 1. 

Lets verify that, the g(x) i.e., x_1 + x_2 would be e‖ 1 in only 3 cases: 

Case 1: when x_1 is 1 and x_2 is 0 

Case 2: when x_1 is 1 and x_2 is 1 

Case 3: when x_1 is 0 and x_2 is 1 

But in both Case 2 and Case 3, we know that the output will be 0 because 
x_2 is 1 in both of them, thanks to the inhibition. 

And we also know that x_1 AND !x_2 would output 1 for Case 1 (above) 
so our thresholding parameter holds good for the given function. 

NOR Function 
 

For a NOR neuron to fire, we want ALL the inputs to be 0 so the thresholding 
parameter should also be 0 and we take them all as inhibitory input. 

NOT Function 

For a NOT neuron, 1 outputs 0 and 0 outputs 1. So we take the input as an 
inhibitory input and set the thresholding parameter to 0. It works! 

Can any boolean function be represented using the M-P neuron? Before you 
answer that, lets understand what M-P neuron is doing geometrically. 
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Training 

Weights start out as random values, and as the neural network learns more 
about what kind of input data leads to a student being accepted into a 
university(above example), the network adjusts the weights based on any errors 
in categorization that the previous weights resulted in. 

This is called training the neural network. Once we have the trained network, 
we can use it for predicting the output for the similar input. 

Error 

This very important concept to define how well a network performing during 
the training. 

In the training phase of the network, it make use of error value to adjust the 
weights so that it can get reduced error at each step. 

The goal of the training phase to minimize the error 

Mean Squared Error is one of the popular error function. it is a modified 
version Sum Squared Error. 

 

Or we can write MSE as: 
 

Forward Propagation 

By propagating values from the first layer (the input layer) through all the 
mathematical functions represented by each node, the network outputs a value. 
This process is called a forward pass. 
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Code for implementing the forward propagation using numpy: 

import numpy as np 

def sigmoid(x): 

“”” 
Calculate sigmoid 

“”” 
return 1/(1+np.exp(-x)) 

# Network size 

N_input = 4 

N_hidden = 3 

N_output = 2 

np.random.seed(42) 

# Make some fake data 

X = np.random.randn(4) 

weights_input_to_hidden = np.random.normal(0, scale=0.1, 
size=(N_input, N_hidden)) 

weights_hidden_to_output = np.random.normal(0, scale=0.1, 
size=(N_hidden, N_output)) 

 
# TODO: Make a forward pass through the network 

hidden_layer_in = np.dot(X, weights_input_to_hidden) 

hidden_layer_out = sigmoid(hidden_layer_in) 

print(„Hidden-layer Output:‟) 
print(hidden_layer_out) 

o u t p u t _ l a y e r _ i n = n p . d o t ( h i d d e n _ l a y e r _ o u t , 
weights_hidden_to_output) 

output_layer_out = sigmoid(output_layer_in) 
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print(„Output-layer Output:‟) 
print(output_layer_out) 

Gradient Descent 

Gradient descent is an optimization algorithm used to find the values of 
parameters (coefficients) of a function (f) that minimizes a cost function 
(cost).Gradient descent is best used when the parameters cannot be calculated 
analytically (e.g. using linear algebra) and must be searched for by an optimization 
algorithm.Gradient descent is used to find the minimum error by minimizing a 
―cost‖ function. 

In the university example(explained it in the neural network section), the 
correct lines to divide the dataset is already defined. How does we find the correct 
line? As we know, weights are adjusted during the training process. Adjusting the 
weight will enable each neuron to correctly divide the dataset with given dataset. 

To figure out how we‘re going to find these weights, start by thinking about 
the goal. We want the network to make predictions as close as possible to the real 
values. To measure this, we need a metric of how wrong the predictions are, 
the error. A common metric is the sum of the squared errors (SSE): 

 
where y^ is the prediction and y is the true value, and you take the sum over 

all output units j and another sum over all data points ì. 

The SSE is a good choice for a few reasons. The square ensures the error is 
always positive and larger errors are penalized more than smaller errors. Also, it 
makes the math nice, always a plus. 

Remember that the output of a neural network, the prediction, depends on the 
weights 

 

 
and accordingly the error depends on the weights 
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We want the network‘s prediction error to be as small as possible and the 
weights are the knobs we can use to make that happen. Our goal is to find weights 
wij that minimize the squared error E. To do this with a neural network, typically 
we use gradient descent. With gradient descent, we take multiple small steps 
towards our goal. In this case, we want to change the weights in steps that reduce 
the error. Continuing the analogy, the error is our mountain and we want to get 
to the bottom. Since the fastest way down a mountain is in the steepest direction, 
the steps taken should be in the direction that minimizes the error the most. 

Back Propagation 

In neural networks, you forward propagate to get the output and compare it 
with the real value to get the error. Now, to minimise the error, you propagate 
backwards by finding the derivative of error with respect to each weight and then 
subtracting this value from the weight value. This is called back propagation. 

Before, we saw how to update weights with gradient descent. The back 
propagation algorithm is just an extension of that, using the chain rule to find the 
error with the respect to the weights connecting the input layer to the hidden layer 
(for a two layer network). 

Here is the back propagation algorithm from Udacity: 
 

Code for implementing the propagation in numpy: 
import numpy as np 

from data_prep import features, targets, features_test, 
targets_test 
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np.random.seed(21) 

def sigmoid(x): 

“”” 
Calculate sigmoid 

“”” 
return 1 / (1 + np.exp(-x)) 

 
# Hyperparameters 

n_hidden = 2 # number of hidden units 

epochs = 900 

learnrate = 0.005 

n_records, n_features = features.shape 

last_loss = None 

# Initialize weights 

weights_input_hidden = np.random.normal(scale=1 / n_features 
** .5, 

size=(n_features, 
n_hidden)) 

weights_hidden_output = np.random.normal(scale=1 / n_features 
** .5, 

size=n_hidden) 

for e in range(epochs): 

del_w_input_hidden = np.zeros(weights_input_hidden.shape) 

d e l _ w _ h i d d e n _ o u t p u t = 
np.zeros(weights_hidden_output.shape) 

for x, y in zip(features.values, targets): 

## Forward pass ## 

# TODO: Calculate the output 

hidden_input = np.dot(x, weights_input_hidden) 

hidden_output = sigmoid(hidden_input) 

output = sigmoid(np.dot(hidden_output, 

weights_hidden_output)) 

## Backward pass ## 

# TODO: Calculate the network‟s prediction error 
error = y - output 

# TODO: Calculate error term for the output unit 

output_error_term = error * output * (1 - output) 

## propagate errors to hidden layer 

# TODO: Calculate the hidden layer‟s contribution to 
the error 
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hidden_error = np. dot( output_error_term, 
weights_hidden_output) 

# TODO: Calculate the error term for the hidden 
layer 

hidden_error_term = hidden_error * hidden_output * 
(1 - hidden_output) 

# TODO: Update the change in weights 

del_w_hidden_output += output_error_term * 

hidden_output 
del_w_input_hidden += hidden_error_term * x[:, None] 

# TODO: Update weights 

weights_input_hidden += learnrate * del_w_input_hidden 
/ n_records 

weights_hidden_output += learnrate * del_w_hidden_output 
/ n_records 

# Printing out the mean square error on the training set 

if e % (epochs / 10) == 0: 

h i d d e n _ o u t p u t = s i g m o i d ( n p . d o t ( x , 
weights_input_hidden)) 

out = sigmoid(np.dot(hidden_output, 

weights_hidden_output)) 

loss = np.mean((out - targets) ** 2) 

if last_loss and last_loss < loss: 

print(“Train loss: “, loss, “ WARNING - Loss 
Increasing”) 

else: 

print(“Train loss: “, loss) 
last_loss = loss 

# Calculate accuracy on test data 

hidden = sigmoid(np.dot(features_test, weights_input_hidden)) 

out = sigmoid(np.dot(hidden, weights_hidden_output)) 

predictions = out > 0.5 

accuracy = np.mean(predictions == targets_test) 

print(“Prediction accuracy: {:.3f}”.format(accuracy)) 
Regularisation 

Regularisation is the technique used to solve the over-fitting problem. Over- 
fitting happens when model is biased to one type of datset. There are different 
types of regularisation techniques, I think the mostly used regularisation is dropout. 
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Dropout is a regularization technique for reducing overfitting in neural 

networks by preventing complex co-adaptations on training data. It is a very 

efficient way of performing model averaging with neural networks.[1] The term 

“dropout” refers to dropping out units (both hidden and visible) in a neural 

network. 

During the training, randomly selected neurons are not considered. We can 
set the number of neurons for the dropout. Their contribution to the activation 
of downstream neurons is temporally removed on the forward pass and any weight 
updates are not applied to the neuron on the backward pass. I think best practise 
is to remove 20 % of neurons. 

 
 

 
 

 
 

The building block of the deep neural networks is called the sigmoid neuron. 
Sigmoid neurons are similar to perceptrons, but they are slightly modified such 
that the output from the sigmoid neuron is much smoother than the step functional 
output from perceptron. 

In this post, we will talk about the motivation behind the creation of sigmoid 
neuron and working of the sigmoid neuron model. 

This is the 1st part in the two-part series discussing the working of sigmoid 
neuron and it‘s learning algorithm: 

1 | Sigmoid Neuron — Building Block of Deep Neural Networks 

2 | Sigmoid Neuron Learning Algorithm Explained With Math 

Why Sigmoid Neuron 

Before we go into the working of a sigmoid neuron, let‘s talk about the 
perceptron model and its limitations in brief. 

Perceptron model takes several real-valued inputs and gives a single binary 
output. In the perceptron model, every input xi has weight wi associated with it. 
The weights indicate the importance of the input in the decision-making process. 
The model output is decided by a threshold W if the weighted sum of the inputs 
is greater than threshold W output will be 1 else output will be 0. In other words, 
the model will fire if the weighted sum is greater than the threshold. 

From the mathematical representation, we might say that the thresholding 
logic used by the perceptron is very harsh. Let‘s see the harsh thresholding logic 
with an example. 
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Perceptron (Left) & Mathematical Representation (Right) 

Consider the decision making process of a person, whether he/she would like 
to purchase a car or not based on only one input X1—Salary and by setting the 
threshold b(W) = -10 and the weight W = 0.2. The output from the perceptron 
model will look like in the figure shown below. 

Data (Left) & Graphical Representation of Output(Right) 

Red points indicates that a person would not buy a car and green points 
indicate that person would like to buy a car. Isn‘t it a bit odd that a person with 
50.1K will buy a car but someone with a 49.9K will not buy a car? The small 
change in the input to a perceptron can sometimes cause the output to completely 
flip, say from 0 to 1. This behavior is not a characteristic of the specific problem 
we choose or the specific weight and the threshold we choose. It is a characteristic 
of the perceptron neuron itself which behaves like a step function. We can overcome 



Neural Network in Deep Learning 59 
 

 

 

this problem by introducing a new type of artificial neuron called a sigmoid 

neuron. 

SIGMOID NEURON 

Can we have a smoother (not so harsh) function? 

Introducing sigmoid neurons where the output function is much smoother than 
the step function. In the sigmoid neuron, a small change in the input only causes 
a small change in the output as opposed to the stepped output. There are many 
functions with the characteristic of an ― S‖ shaped curve known as sigmoid functions. 
The most commonly used function is the logistic function. 

Sigmoid Neuron Representation (logistic function) 

We no longer see a sharp transition at the threshold b. The output from the 
sigmoid neuron is not 0 or 1. Instead, it is a real value between 0–1 which can 
be interpreted as a probability. 

REGRESSION AND CLASSIFICATION 

The inputs to the sigmoid neuron can be real numbers unlike the boolean 
inputs in MP Neuron and the output will also be a real number between 0–1. In 
the sigmoid neuron, we are trying to regress the relationship between X and Y 

in terms of probability. Even though the output is between 0–1, we can still use 
the sigmoid function for binary classification tasks by choosing some threshold. 

Learning Algorithm 

An algorithm for learning the parameters w and b of the sigmoid neuron model 
by using the gradient descent algorithm. 
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Minimize the Squared Error Loss 

The objective of the learning algorithm is to determine the best possible values 
for the parameters, such that the overall loss (squared error loss) of the model is 
minimized as much as possible. Here goes the learning algorithm: 

Sigmoid Learning Algorithm 

We initialize w and b randomly. We then iterate over all the observations in 
the data, for each observation find the corresponding predicted outcome using the 
sigmoid function and compute the squared error loss. Based on the loss value, we 
will update the weights such that the overall loss of the model at the new 
parameters will be less than the current loss of the model. 

 

 
Loss Optimization 

We will keep doing the update operation until we are satisfied. Till satisfied 
could mean any of the following: 

• The overall loss of the model becomes zero. 
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• The overall loss of the model becomes a very small value closer to zero. 

• Iterating for a fixed number of passes based on computational capacity. 

Can It Handle Non-Linear Data? 

One of the limitations of the perceptron model is that the learning algorithm 
works only if the data is linearly separable. That means that the positive points 
will lie on one side of the boundary and negative points lie another side of the 
boundary. Can sigmoid neuron handle non-linearly separable data?. 

Let‘s take an example of whether a person is going to buy a car or not based 
on two inputs, X — Salary in Lakhs Per Annum (LPA) and X — Size of the family. 
I am assuming that there is a relationship between X and Y, it is approximated 
using the sigmoid function. 

Input Data(Left) & Scatter Plot of Data(Right) 

The red points indicate that the output is 0 and green points indicate that it 
is 1. 
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As we can see from the figure, there is no line or a linear boundary that can 
effectively separate red and green points. If we train a perceptron on this data, 
the learning algorithm will never converge because the data is not linearly 
separable. Instead of going for convergence, I will run the model for a certain 
number of iterations so that the errors will be minimized as much as possible. 

Perceptron Decision boundary for fixed iterations 

From the perceptron decision boundary, we can see that the perceptron doesn‘t 
distinguish between the points that lie close to the boundary and the points lie 
far inside because of the harsh thresholding logic. But in the real world scenario, 
we would expect a person who is sitting on the fence of the boundary can go either 
way, unlike the person who is way inside from the decision boundary. Let‘s see 
how sigmoid neuron will handle this non-linearly separable data. Once I fit our 
two-dimensional data using the sigmoid neuron, I will be able to generate the 3D 
contour plot shown below to represent the decision boundary for all the observations. 

Sigmoid Neuron Decision Boundary (Left) & Top View of Decision Boundary 

(Right) 

For comparison, let‘s take the same two observations and see what will be 
predicted outcome from the sigmoid neuron for these observations. As you can 
see the predicted value for the observation present in the far left of the plot is 
zero (present in the dark red region) and the predicted value of another observation 
is around 0.35 i.e. there is a 35% chance that the person might buy a car. Unlike 
the rigid output from the perceptron, now we a smooth and continuous output 
between 0–1 which can be interpreted as a probability. 

STILL DOES NOT COMPLETELY SOLVE OUR PROBLEM FOR 
NON-LINEAR DATA. 

Although we have introduced the non-linear sigmoid neuron function, it is still 
not able to effectively separate red points from green points. The important point 
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is that from a rigid decision boundary in perceptron, we have taken our first step 
in the direction of creating a decision boundary that works well for non-linearly 
separable data. Hence the sigmoid neuron is the building block of deep neural 
network eventually we have to use a network of neurons to helps us out to create 
a ―perfect‖ decision boundary. 

 
 

  
 

 
 

Hidden layers have ushered in a new era, with the old techniques being non- 
efficient, particularly when it comes to problems like Pattern Recognition, Object 
Detection, Image Segmentation, and other image processing-based problems. CNN 
is one of the most deployed deep 

learning neural networks. 
 

BACKGROUND OF CNNS 

Around the 1980s, CNNs were developed and deployed for the first time. 

A CNN could only detect handwritten digits at the time. CNN was primarily used 

in various areas to read zip and pin codes etc. 

The most common aspect of any A.I. model is that it requires a massive 
amount of data to train. This was one of the biggest problems that CNN faced 
at the time, and due to this, they were only used in the postal industry. Yann LeCun 
was the first to introduce convolutional neural networks. 

Kunihiko Fukushima, a renowned Japanese scientist, who even invented 
recognition, which was a very simple Neural Network used for image identification, 
had developed on the work done earlier by LeCun 

What is CNN? 

In the field of deep learning, convolutional neural network (CNN) is among 
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the class of deep neural networks, which was being mostly deployed in the field 
of analyzing/image recognition. 

Convolutional Neural uses a very special kind of method which is being 
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known as Convolution. The mathematical definition of convolution is a mathematical 
operation being applied on the two functions that give output in a form of a third 
function that shows how the shape of one function is being influenced, modified 
by the other function. 

The Convolutional neural networks(CNN) consists of various layers of 

artificial neurons. Artificial neurons,   similar to that neuron cells that are 

being used by the human brain for passing various sensory input signals 

an d o th er respon ses, are mathematical functions that are being used for 
calculating the sum of various inputs and giving output in the form of an 
activation value. 

The behaviour of each CNN neuron is being defined by the value of its 
weights. When being fed with the values (of the pixel), the artificial neurons of 
a CNN recognizes various visual features and specifications. 

When we give an input image into a CNN, each of its inner layers generates 

various activation maps. Activation maps point out the relevant features of the 
given input image. Each of the CNN neurons generally takes input in the form 
of a group/patch of the pixel, multiplies their values(colours) by the value of 
its weights, adds them up, and input them through the respective activation 
function. 

The first (or maybe the bottom) layer of the CNN usually recognizes the 
various features of the input image such as edges horizontally, vertically, and 
diagonally. 

The output of the first layer is being fed as an input of the next layer, which 
in turn will extract other complex features of the input image like corners and 
combinations of edges. 

The deeper one moves into the convolutional neural network, the more the 
layers start detecting various higher-level features such as objects, faces, etc 

CNN’s Basic Architecture 

A CNN architecture consists of two key components: 

• A convolution tool that separates and identifies the distinct features of an 
image for analysis in a process known as Feature Extraction 

• A fully connected layer that takes the output of the convolution process 
and predicts the image‘s class based on the features retrieved earlier. 

The CNN is made up of three types of layers: convolutional layers, pooling 
layers, and fully-connected (FC) layers. 
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Convolution Layers 

This is the very first layer in the CNN that is responsible for the extraction 

of the different features from the input images. The convolution mathematical 
operation is done between the input image and a filter of a specific size MxM 
in this layer. 

THE FULLY CONNECTED 

The Fully Connected (FC) layer comprises the weights and biases together 

with the neurons and is used to connect the neurons between two separate layers. 
The last several layers of a CNN Architecture are usually positioned before the 
output layer. 

Pooling layer 

The Pooling layer is responsible for the reduction of the size(spatial) of the 

Convolved Feature. This decrease in the computing power is being required to 
process the data by a significant reduction in the dimensions. 

There are two types of pooling 

1 average pooling 

2 max pooling. 

A Pooling Layer is usually applied after a Convolutional Layer. This layer‘s 
major goal is to lower the size of the convolved feature map to reduce computational 
expenses. This is accomplished by reducing the connections between layers and 
operating independently on each feature map. There are numerous sorts of Pooling 
operations, depending on the mechanism utilised. 
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The largest element is obtained from the feature map in Max Pooling. The 
average of the elements in a predefined sized Image segment is calculated using 
Average Pooling. Sum Pooling calculates the total sum of the components in the 
predefined section. The Pooling Layer is typically used to connect the Convolutional 
Layer and the FC Layer. 

Dropout 

To avoid overfitting (when a model performs well on training data but not 

on new data), a dropout layer is utilised, in which a few neurons are removed 
from the neural network during the training phase, resulting in a smaller model. 

Activation Functions 

They’re utilised to learn and approximate any form of network variable- 

to-variable association that’s both continuous and complex. 

It gives the network non-linearity. The ReLU, Softmax, and tanH are some 
of the most often utilised activation functions. 

TRAINING THE CONVOLUTIONAL NEURAL NETWORK 

The process of adjusting the value of the weights is defined as the ―training‖ 
of the neural network. 

Firstly, the CNN initiates with the random weights. During the training of 

CNN, the neural network is being fed with a large dataset of images being 

labelled with their corresponding class labels (cat, dog, horse, etc.). The CNN 
network processes each image with its values being assigned randomly and then 
make comparisons with the class label of the input image. 
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If the output does not match the class label(which mostly happen initially at 
the beginning of the training process and therefore makes a respective small 
adjustment to the weights of its CNN neurons so that output correctly matches 
the class label image. 

The corrections to the value of weights are being made through a technique 
which is known as backpropagation. Backpropagation optimizes the tuning process 
and makes it easier for adjustments for better accuracy every run of the training 
of the image dataset is being called an ―epoch.‖ 

The CNN goes through several series of epochs during the process of training, 
adjusting its weights as per the required small amounts. 

After each epoch step, the neural network becomes a bit more accurate at 

classifying and correctly predicting the class of the training images. As the CNN 
improves, the adjustments being made to the weights become smaller and smaller 
accordingly. 

After training the CNN, we use a test dataset to verify its accuracy. The test 

dataset is a set of labelled images that were not being included in the training 

process. Each image is being fed to CNN, and the output is compared to the actual 
class label of the test image. Essentially, the test dataset evaluates the prediction 
performance of the CNN 

If a CNN accuracy is good on its training data but is bad on the test data, 
it is said as ―overfitting.‖ This happens due to less size of the dataset (training) 

Limitations 

They (CNN) use massive computing power and resources for the recognition 
of various visual patterns/trends that is very much impossible to achieve by the 
human eye. 

One usually needs a very long time to train a convolutional neural network, 
especially with a large size of image datasets. 
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One generally requires very specialized hardware (like a GPU) to perform the 
training of the dataset 

PYTHON CODE IMPLEMENTATION FOR IMPLEMENTING 
CNN FOR CLASSIFICATION 

Importing Relevant Libraries 

import NumPy as np 

%matplotlib inline 

import matplotlib.image as mpimg 

import matplotlib.pyplot as plt 

import TensorFlow as tf 

tf.compat.v1.set_random_seed(2019) 

Loading MNIST Dataset 

( X _ t r a i n , Y _ t r a i n ) , ( X _ t e s t , Y _ t e s t ) = 
keras.datasets.mnist.load_data() 

Scaling The Data 

X_train = X_train / 255 

X_test = X_test / 255 

 
#flatenning 

X_train_flattened = X_train.reshape(len(X_train), 28*28) 

X_test_flattened = X_test.reshape(len(X_test), 28*28) 

Designing The Neural Network 

model = keras.Sequential([ 

k e r a s . l a y e r s . D e n s e ( 1 0 , i n p u t _ s h a p e = ( 7 8 4 , ) , 
activation=‟sigmoid‟) 
]) 

model.compile(optimizer=‟adam‟, 
loss=‟sparse_categorical_crossentropy‟, 
metrics=[„accuracy‟]) 

model.fit(X_train_flattened, Y_train, epochs=5) 

Output: 

Epoch 1/5 

1875/1875 [==============================] - 8s 4ms/step - 
loss: 0.7187 - accuracy: 0.8141 

Epoch 2/5 

1875/1875 [==============================] - 6s 3ms/step - 
loss: 0.3122 - accuracy: 0.9128 
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Epoch 3/5 

1875/1875 [==============================] - 6s 3ms/step - 
loss: 0.2908 - accuracy: 0.9187 

Epoch 4/5 

1875/1875 [==============================] - 6s 3ms/step - 
loss: 0.2783 - accuracy: 0.9229 

Epoch 5/5 

1875/1875 [==============================] - 6s 3ms/step - 
loss: 0.2643 - accuracy: 0.9262 

Confusion Matrix for visualization of predictions 
Y_predict = model.predict(X_test_flattened) 

Y_predict_labels = [np.argmax(i) for i in Y_predict] 

c m = 
tf.math.confusion_matrix(labels=Y_test,predictions=Y_predict_labels) 

%matplotlib inline 

plt.figure(figsize = (10,7)) 

sn.heatmap(cm, annot=True, fmt=‟d‟) 
plt.xlabel(„Predicted‟) 
plt.ylabel(„Truth‟) 

Output 
 



 

 

Matlab and Python in Machine Learning 71 

3 

 

 

 
 

 
 

 

 

 

 

 

 

Matlab and Python in 

  Machine Learning  
 

 

 
 
 

 
 

The essential version of MATLAB was written in FORTRAN77. After 1983, 
Clever Moler and his partners modified the whole application in C Programming. 
Be that as it may, Matlab is a confused mixture of multiple programming languages 
like C, C++, and Java. 

That‘s the only reason Matlab is used for technical computing which makes 
this a high-performance language. 

Python is well known for its straightforward syntax. You can improve Python 
Programming performance according to your need like avoid unwanted loops, get 
updated with the latest versions, the syntax is easy so try to make your code small 
and light that leads to high speed in execution. 

MATLAB VS PYTHON FOR DEEP LEARNING 

Python is viewed as in any case in the rundown of all AI development 
languages because of the simple syntax. 

In Matlab, if you have good command in code, you can apply profound 
learning strategies to your work whether you‘re structuring algorithms, getting 
ready and marking information, or creating code and sending to inserted frameworks. 
But you need to buy the deep learning toolbox in Matlab. 
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Matlab or Python for Machine Learning 

Matlab is most uncommonly seen as a business numerical handling condition, 
yet moreover as a programming language. It likewise has a standard library. Be 
that as it may, it utilizes joint cross-section variable based math and a broad 
framework for data taking care of and plotting. It is like a manner containing tool 
compartments for the students. In any case, these will cost the customer extra. 

Python is a kind of programming language. The most widely recognized usage 
to this programming language is that in C (otherwise called C Python). In addition 
to the fact that Python is a programming language, yet it comprises a substantial 
standard library. This library is organized to concentrate on general programming 
and contain modules for OS explicit, stringing, systems administration, and 
databases. 

Matlab vs python for Scientific Computing 

Matlab has been there for a long time for scientific computing, and Python 
has its computing packages like SciPy, NumPy have not been outdated. So Matlab 
becomes a gift for the communities of Data analysis, Visualization, and Scientific. 
Matlab is a Math oriented language with different kinds of toolboxes that have 
several purposes, like Visual processing and Driving a Robot, etc. But you have 
to pay for the toolkits, those are professionally developed and tested by experts. 
In Python, you have to rely on community-authored packages for scientific and 
engineering usages. 

Everyone has their way of learning and capabilities, so programming has the 
same rule every language has its pros and cons. So do an experiment with both 
words for a few days then decide which suits you best. 

MATLAB VS PYTHON FOR ENGINEERING 

MATLAB is the simplest and most beneficial computing environment for 
specialists and engineers. It incorporates the MATLAB language, the top primary 
programming language committed to numerical and scientific computing. 

Python is use in mechanical engineering. The most popular application of 
python is to perform numerical analysis. 

 
 

  
 

The term ‗artificial intelligence‘ or ‗AI‘ as it is now commonly known was 
first coined by the renowned computer scientist John McCarthy in 1955 – 56. 
There are various definitions of what AI connotes. The European Commission 
(EC) defines AI as follows: 
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―Artificial intelligence (AI) refers to systems that display intelligent behaviour 
by analyzing their environment and taking actions – with some degree of autonomy 
– to achieve specific goals. AI -based systems can be purely software-based, acting 
in the virtual world (e.g. voice assistants, image analysis software, search engines, 
speech and face recognition systems) or AI can be embedded in hardware devices 
(e.g. advanced robots, autonomous cars, drones or Internet of Things applications).‖ 

And if it is good enough for EC, it should be good enough for us. But to keep 
it simple, AI involves using computers to do things that traditionally require human 
intelligence. AI involves creating algorithms to classify, analyze, and make 
predictions using this data. 

Machine learning (ML) is a subset of AI and is essentially a modelling 
technique that figures out a model from the data given to it. The data can be 
anything from audio, images to documents. The primary objective of ML is to 
create a model using the training data when mathematical equations and laws are 
not adequate to arrive at the model. 

Deep Learning, the main topic of this chapter, is a subset of ML, in which 
a model learns to perform classification tasks directly from images, text, or sound. 
Many people confuse between ML and Deep Learning. The two main (there are 
others too) differences between ML and Deep Learning is that unlike ML, Deep 
Learning needs a large training dataset. And while ML takes shorter training times, 
Deep Learning tends to take longer training times. In order to understand Deep 
Learning and how MATLAB can help, it is necessary to understand what the ‗deep‘ 
in Deep Learning stands for. And in order to do that, we need to first understand 
what a neural network means. 

The concept of neural network is based on biological neurons, which are the 
elements in the brain that establish communication with the nerves. A neural 
network architecture simulates this communication in the computational 
environment by programs composed of nodes and values that work together to 
process data. A typical system of neural network architecture will attempt to solve 
a problem by asking a series of ‗yes‘ and ‗no‘ questions about the subject. 

By discarding certain elements and accepting others, an acceptable answer is 
eventually found. The ‗deep‘ in Deep Learning isn‘t a reference to any kind of 
deeper understanding achieved by the approach; rather, it stands for this idea of 
successive layers of representations. When Deep Learning was first introduced, 
it consisted only of one input and one output layers, with may be one layer between 
the two. Anything more than 2 layers qualify as Deep Learning. Today‘s Deep 
Learning networks can have literally 100s of layers, thanks to increase in processing 
power. How many layers contribute to a model of the data is called the depth of 
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the model. A deep neural network thus combines multiple nonlinear processing 
layers, using simple elements operating in parallel and inspired by biological 
nervous systems. It consists of an input layer, several hidden layers, and an output 
layer. The layers are interconnected via nodes, or neurons, with each hidden layer 
using the output of the previous layer as its input. It is generally perceived that 
the greater the number of layers, better the accuracy of the final model. 

Deep Learning is especially well-suited to identification applications such as 
face recognition, text translation, voice recognition, and advanced driver assistance 
systems, including, lane classification and traffic sign recognition since it is 
deemed as having better accuracy than ML. Advanced tools and techniques have 
dramatically improved Deep Learning algorithms—to the point where they can 
outperform humans at classifying images, win against the world‘s best GO player, 
or enable a voice-controlled assistant used by the likes of Amazon and google 
Home. 

USING MATLAB® FOR DEEP LEARNING 

MATLAB® is a programming platform designed specifically for engineers and 
scientists to analyze and design systems and products in a fast and efficient 
manner. The heart of MATLAB is the MATLAB language, a matrix-based language 
allowing the most natural expression of computational mathematics. MATLAB 
is considered one of the best programming languages at being able to handle the 
matrices of Deep Learning in a simple and intuitive manner. 

Advantages of MATLAB for Deep Learning 

MATLAB has interactive Deep Learning apps for labeling that includes signal 
data, audio data, images, and video. Labelling is one of the most tedious tasks 
in Deep Learning, and MATLAB is the ideal app that automates it. 

MATLAB can help with generating synthetic data when you don‘t have 
enough data of the right scenarios. This is a huge benefit as Deep Learning depends 
a lot on huge amount of datasets. • In the case of automated driving, you can author scenarios and 

simulate the output of different sensors using a 3D simulation 

environment. • In radar and communications, this includes generating data for 

waveform-modulation-identification and target classification 

applications. • MATLAB has a variety of ways to interact and transfer data between 

Deep Learning frameworks. 
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 • MATLAB supports ONNX to import and export models between 

other frameworks. A model designed in PyTorch, for example, can 

be brought into MATLAB, and models trained in MATLAB can be 

exported using the ONNX framework. • MATLAB also supports Python interoperability: You can call Python 

from MATLAB and MATLAB from Python. • The MATLAB Deep Learning Toolbox™ provides a framework for 

designing and implementing deep neural networks with algorithms, 

pre-trained models, and apps. • MATLAB also provides specialized toolboxes and functionality for 

Reinforcement Learning, Automated Driving, Natural Language 

Processing, Medical Image Processing and Computer Vision 
 
 

  
 

 
 

 

MATLAB VS PYTHON: COMPARING FEATURES AND 
PHILOSOPHY 

Python is a high-level, general-purpose programming language designed for 
ease of use by human beings accomplishing all sorts of tasks. Python was created 
by Guido van Rossum and first released in the early 1990s. Python is a mature 
language developed by hundreds of collaborators around the world. 

Python is used by developers working on small, personal projects all the way 
up to some of the largest internet companies in the world. Not only does Python 
run Reddit and Dropbox, but the original Google algorithm was written in Python. 
Also, the Python-based Django Framework runs Instagram and many other websites. 
On the science and engineering side, the data to create the 2019 photo of a black 
hole was processed in Python, and major companies like Netflix use Python in 
their data analytics work. 

There is also an important philosophical difference in the MATLAB vs Python 
comparison. MATLAB is proprietary, closed-source software. For most people, 
a license to use MATLAB is quite expensive, which means that if you have code 
in MATLAB, then only people who can afford a license will be able to run it. 
Plus, users are charged for each additional toolbox they want to install to extend 
the basic functionality of MATLAB. Aside from the cost, the MATLAB language 
is developed exclusively by Mathworks. If Mathworks were ever to go out of 
business, then MATLAB would no longer be able to be developed and might 
eventually stop functioning. 
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On the other hand, Python is free and open-source software. Not only can 
you download Python at no cost, but you can also download, look at, and modify 
the source code as well. This is a big advantage for Python because it means that 
anyone can pick up the development of the language if the current developers were 
unable to continue for some reason. 

If you‘re a researcher or scientist, then using open-source software has some 
pretty big benefits. Paul Romer, the 2018 Nobel Laureate in Economics, is a 
recent convert to Python. By his estimation, switching to open-source software 
in general, and Python in particular, brought greater integrity and accountability 
to his research. This was because all of the code could be shared and run by 
any interested reader. 

Moreover, since Python is available at no cost, a much broader audience 
can use the code you develop. As you‘ll see a little later on in the article, 
Python has an awesome community that can help you get started with the 
language and advance your knowledge. There are tens of thousands of tutorials, 
articles, and books all about Python software development. Here are a few to 
get you started: • Introduction to Python 3 • Basic Data Types in Python • Python 3 Basics Learning Path 

Plus, with so many developers in the community, there are hundreds of 
thousands of free packages to accomplish many of the tasks that you‘ll want to 
do with Python. 

Like MATLAB, Python is an interpreted language. This means that Python 
code can be ported between all of the major operating system platforms and CPU 
architectures out there, with only small changes required for different platforms. 
There are distributions of Python for desktop and laptop CPUs and microcontrollers 
like Adafruit. Python can also talk to other microcontrollers like Arduino with a 
simple programming interface that is almost identical no matter the host operating 
system. 

For all of these reasons, and many more, Python is an excellent choice to 
replace MATLAB as your programming language of choice. Now that you‘re 
convinced to try out Python, read on to find out how to get it on your computer 
and how to switch from MATLAB! 

Note: GNU Octave is a free and open-source clone of MATLAB. In this sense, 
GNU Octave has the same philosophical advantages that Python has around code 
reproducibility and access to the software. 
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Octave‘s syntax is mostly compatible with MATLAB syntax, so it provides 
a short learning curve for MATLAB developers who want to use open-source 
software. However, Octave can‘t match Python‘s community or the number of 
different kinds of applications that Python can serve, so we definitely recommend 
you switch whole hog over to Python. 

Besides, this website is called Real Python, not Real Octave =Ø 

SETTING UP YOUR ENVIRONMENT FOR PYTHON 

Getting Python via Anaconda 

Python can be downloaded from a number  of different sources, 
called distributions. For instance, the Python that you can download from 
the official Python website is one distribution. Another very popular Python 
distribution, particularly for math, science, engineering, and data science 
applications, is the Anaconda distribution. 

There are two main reasons that Anaconda is so popular: 

1. Anaconda distributes pre-built packages for Windows, macOS, and 

Linux, which means that the installation process is really easy and 

the same for all three major platforms. 

2. Anaconda includes all of the most popular packages for engineering 

and data science type workloads in one single installer. 

For the purposes of creating an environment that is very similar to MATLAB, 
you should download and install Anaconda. As of this writing, there are two 
major versions of Python available: Python 2 and Python 3. 

You should definitely install the version of Anaconda for Python 3, since 
Python 2 will not be supported past January 1, 2020. Python 3.7 is the most recent 
version at the time of this writing, but Python 3.8 should be out a few months after 
this chapter is published. Either 3.7 or 3.8 will work the same for you, so choose 
the most recent version you can. 

Once you have downloaded the Anaconda installer, you can follow the default 
set up procedures depending on your platform. You should install Anaconda in 
a directory that does not require administrator permission to modify, which is the 
default setting in the installer. 

With Anaconda installed, there are a few specific programs you should know 
about. The easiest way to launch applications is to use the Anaconda Navigator. 
On Windows, you can find this in the Start Menu and on macOS you can find 
it in Launchpad. Here‘s a screenshot of the Anaconda Navigator on Windows: 
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In the screenshot, you can see several installed applications, 

including JupyterLab, Jupyter Notebook, and Spyder. 

On Windows, there is one other application that you should know about. This 
is called Anaconda Prompt, and it is a command prompt set up specifically to 
work with conda on Windows. 

If you want to type conda commands in a terminal, rather than using the 
Navigator GUI, then you should use Anaconda Prompt on Windows. 

On macOS, you can use any terminal application such as the default 
Terminal.app or iTerm2 to access conda from the command line. 

On Linux, you can use the terminal emulator of your choice and which 
specific emulator is installed will depend on your Linux distribution. 

Terminology Note: You may be a little bit confused about conda versus 
Anaconda. The distinction is subtle but important. Anaconda is a distribution of 
Python that includes many of the necessary packages for scientific work of all 
kinds. conda is a cross-platform package management software that is included 
with the Anaconda distribution of Python. conda is the software that you use to 
build, install, and remove packages within the Anaconda distribution. 

Python also includes another way to install packages, called pip. If you‘re 
using Anaconda, you should always prefer to install packages using conda whenever 
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possible. 

Sometimes, though, a package is only available with pip, and for those cases, 
you can read What Is Pip? A Guide for New Pythonistas. 

Changing the Default Window Layout in Spyder 

The default window in Spyder looks like the image below. This is for version 
3.3.4 of Spyder running on Windows 10. It should look quite similar on macOS 
or Linux: 

Before you take a tour of the user interface, you can make the interface look 
a little more like MATLAB. In the View ! Window layouts menu choose MATLAB 

layout. That will change the window automatically so it has the same areas that 
you‘re used to from MATLAB, annotated on the figure below: 

In the top left of the window is the File Explorer or directory listing. In this 
pane, you can find files that you want to edit or create new files and folders to 
work with. 

In the top center is a file editor. In this editor, you can work on Python scripts 
that you want to save to re-run later on. By default, the editor opens a file 
called temp.py located in Spyder‘s configuration directory. This file is meant as 
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a temporary place to try things out before you save them in a file somewhere else 
on your computer. 

In the bottom center is the console. Like in MATLAB, the console is where 
you can run commands to see what they do or when you want to debug some code. 
Variables created in the console are not saved if you close Spyder and open it 
up again. The console is technically running IPython by default. 

Any commands that you type in the console will be logged into the history 
file in the bottom right pane of the window. Furthermore, any variables that you 
create in the console will be shown in the variable explorer in the top right pane. 

Notice that you can adjust the size of any pane by putting your mouse over 
the divider between panes, clicking, and dragging the edge to the size that you 
want. You can close any of the panes by clicking the x in the top of the pane. 

You can also break any pane out of the main window by clicking the button 
that looks like two windows in the top of the pane, right next to the x that closes 
the pane. 

When a pane is broken out of the main window, you can drag it around and 
rearrange it however you want. If you want to put the pane back in the main 
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window, drag it with the mouse so a transparent blue or gray background appears 
and the neighboring panes resize, then let go and the pane will snap into place. 

Once you have the panes arranged exactly how you want, you can ask Spyder 
to save the layout. Go to the View menu and find the Window layouts flyout again. 

Then click Save current layout and give it a name. This lets you reset to 
your preferred layout at any time if something gets changed by accident. You 
can also reset to one of the default configurations from this menu. 

Getting an Integrated Development Environment 

One of the big advantages of MATLAB is that it includes a development 
environment with the software. This is the window that you‘re most likely used 
to working in. There is a console in the center where you can type commands, 
a variable explorer on the right, and a directory listing on the left. 

Unlike MATLAB, Python itself does not have a default development 
environment. 

It is up to each user to find one that fits their needs. Fortunately, Anaconda 
comes with two different integrated development environments (IDEs) that are 
similar to the MATLAB IDE to make your switch seamless. These are called 
Spyder and JupyterLab. In the next two sections, you‘ll see a detailed introduction 
to Spyder and a brief overview of JupyterLab. 

Spyder 

Spyder is an IDE for Python that is developed specifically for scientific Python 
work. One of the really nice things about Spyder is that it has a mode specifically 
designed for people like you who are converting from MATLAB to Python. You‘ll 
see that a little later on. 

Running Statements in the Console in Spyder 

In this chapter, you‘re going to be writing some simple Python commands, 
but don‘t worry if you don‘t quite understand what they mean yet. 

You‘ll learn more about Python syntax a little later on in this chapter. What 
you want to do right now is get a sense for how Spyder‘s interface is similar to 
and different from the MATLAB interface. 

You‘ll be working a lot with the Spyder console in this chapter, so you should 
learn about how it works. 

In the console, you‘ll see a line that starts with In [1]:, for input line 1. Spyder 
(really, the IPython console) numbers all of the input lines that you type. Since 
this is the first input you‘re typing, the line number is 1. In the rest of this chapter, 
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you‘ll see references to ―input line X,‖ where X is the number in the square 
brackets. 

One of the first things I like to do with folks who are new to Python is show 
them the Zen of Python. This short poem gives you a sense of what Python is all 
about and how to approach working with Python. 

To see the Zen of Python, type import this on input line 1 and then run the 
code by pressing Enter. You‘ll see an output like below: 
In [1]: import this 

The Zen of Python, by Tim Peters 

Beautiful is better than ugly. 

Explicit is better than implicit. 

Simple is better than complex. 

Complex is better than complicated. 

Flat is better than nested. 

Sparse is better than dense. 

Readability counts. 

Special cases aren‟t special enough to break the rules. 
Although practicality beats purity. 

Errors should never pass silently. 

Unless explicitly silenced. 

In the face of ambiguity, refuse the temptation to guess. 

There should be one— and preferably only one —obvious way to 
do it. 

Although that way may not be obvious at first unless you‟re 
Dutch. 

Now is better than never. 

Although never is often better than *right* now. 

If the implementation is hard to explain, it‟s a bad idea. 
If the implementation is easy to explain, it may be a good 

idea. 

Namespaces are one honking great idea — let‟s do more of 
those! 

This code has import this on input line 1. The output from running import 
this is to print the Zen of Python onto the console. We‘ll return to several of the 
stanzas in this poem later on in the chapter. 

In many of the code blocks in this chapter, you‘ll see three greater-than signs 
(>>>) in the top right of the code block. If you click that, it will remove the input 
prompt and any output lines, so you can copy and paste the code right into your 
console. 
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Many Pythonistas maintain a healthy sense of humor. This is displayed in 
many places throughout the language, including the Zen of Python. For another 
one, in the Spyder console, type the following code, followed by Enter to run it: 

In [2]: import antigravity 

That statement will open your web browser to the webcomic called XKCD, 
specifically comic #353, where the author has discovered that Python has given 
him the ability to fly! 

You‘ve now successfully run your first two Python statements! Congratulations 
=< 

If you look at the History Log, you should see the first two commands you 
typed in the console (import this and import antigravity). Let‘s define some variables 
and do some basic arithmetic now. In the console, type the following statements, 
pressing Enter after each one: 
In [3]: var_1 = 10 

In [4]: var_2 = 20 

In [5]: var_3 = var_1 + var_2 

In [6]: var_3 

Out[6]: 30 

In this code, you defined 3 variables: var_1, var_2, and var_3. You 
assigned var_1 the  value  10, var_2 the  value  20,  and var_3 the  sum 
of var_1 and var_2. Then you showed the value of the var_3 variable by writing 
it as the only thing on the input line. The output from that statement is shown 
on the next Out line, and the number on the Out line matches the associated In line. 

There are two main things for you to notice in these commands: 

1. If a statement does not include an assignment (with an =), it is 

printed onto an Out line. In MATLAB, you would need to include 

a semicolon to suppress the output even from assignment statements, 

but that is not necessary in Python. 

2. On input lines 3, 4, and 5, the Variable explorer in the top right pane 

updated. 

After you run these three commands, your Variable explorer should look like 
the image below: 

In this image, you can see a table with four columns: 

1. Name shows the name that you gave to var_1, var_2, and var_3. 

2. Type shows the Python type of the variable, in this case, all int for 

integer numbers. 
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3. Size shows the size of the data stored variable, which is more useful 

for lists and other data structures. 

4. Value shows the current value of the variable. 

Running Code in Files in Spyder 

The last stop in our brief tour of the Spyder interface is the File editor pane. 
In this pane, you can create and edit Python scripts and run them using the console. 
By default, Spyder creates a temporary file called temp.py which is intended for 
you to temporarily store commands as you‘re working before you move or save 
them in another file. Let‘s write some code into the temp.py file and see how to 
run it. The file starts with the following code, which you can just leave in place: 
1# -*- coding: utf-8 -*- 

2"”” 
3Spyder Editor 

4 

5This is a temporary script file. 

6"”” 
In this code, you can see two Python syntax structures: • Line 1 has a comment. In Python, the comment character is the hash 

or pound sign (#). MATLAB uses the percent symbol (%) as the 

comment character. Anything following the hash on the line is a 

comment and is usually ignored by the Python interpreter. • Starting on line 2 is a string that provides some context for the 

contents of the file. This is often referred to as a documentation 

string or docstring for short. 

Now you can start adding code to this file. Starting on line 8 in temp.py, enter 
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the following code that is similar to what you already typed in the console: 
8var_4 = 10 

9var_5 = 20 

10var_6 = var_4 + var_5 

Then, there are three ways to run the code: 

1. You can use the F5 keyboard shortcut to run the file just like in 

MATLAB. 

2. You can click the green right-facing triangle in the menu bar just 

above the Editor and File explorer panes. 

3. You can use the Run ! Run menu option. 

The first time you run a file, Spyder will open a dialog window asking you 
to confirm the options you want to use. For this test, the default options are fine 
and you can click Run at the bottom of the dialog box: 
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This will automatically execute the following code in the console: 
In [7]: runfile(„C:/Users/Eleanor/.spyder-py3/temp.py‟, 
...:        wdir=‟C:/Users/Eleanor/.spyder-py3') 

This code will run the file that you were working on. Notice that running the 
file added three variables into the Variable explorer: var_4, var_5, and var_6. 
These are the three variables that you defined in the file. You will also 
see runfile() added to the History log. 

In Spyder, you can also create code cells that can be run individually. To create 
a code cell, add a line that starts with # %% into the file open in the editor: 
11# %% This is a code cell 

12var_7 = 42 

13var_8 = var_7 * 2 

14 

15# %% This is a second code cell 

16print(“This code will be executed in this cell”) 
In this code, you have created your first code cell on line 11 with the # 

%% code. What follows is a line comment and is ignored by Python. On line 12, 
you are assigning var_7 to have the value 42 and then line 13 assigns var_8 to 
be var_7 times two. Line 15 starts another code cell that can be executed separately 
from the first one. 

To execute the code cells, click the Run Current Cell or Run Current Cell and 

Go to the Next One buttons next to the generic Run button in the toolbar. You can 
also use the keyboard shortcuts Ctrl+Enter to run the current cell and leave it 
selected, or Shift+Enter to run the current cell and select the next cell. 

Spyder also offers easy-to-use debugging features, just like in MATLAB. You 
can double-click any of the line numbers in the Editor to set a breakpoint in your 
code. You can run the code in debug mode using the blue right-facing triangle 
with two vertical lines from the toolbar, or the Ctrl+F5 keyboard shortcut. This 
will pause execution at any breakpoints you specify and open the ipdb debugger 
in the console which is an IPython-enhanced way to run the Python debugger pdb. 
You can read more in Python Debugging With pdb. 

JupyterLab 

JupyterLab is an IDE developed by Project Jupyter. You may have heard 
of Jupyter Notebooks, particularly if you‘re a data scientist. Well, JupyterLab 
is the next iteration of the Jupyter Notebook. Although at the time of this 
writing JupyterLab is still in beta, Project Jupyter expects that JupyterLab will 
eventually replace the current Notebook server interface. However, JupyterLab 
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is fully compatible with existing Notebooks so the transition should be fairly 
seamless. 

The main JupyterLab window is shown in the picture below: 

There are two main sections of the interface: 

1. On the left is a File explorer that lets you open files from your 

computer. 

2. On the right side of the window is how you can open create new 

Notebook files, work in an IPython console or system terminal, or 

create a new text file. 
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If you‘re interested in learning more about JupyterLab, you can read a lot more 
about the next evolution of the Notebook in the blog post announcing the beta 
release or in the JupyterLab documentation. You can also learn about the Notebook 
interface in Jupyter Notebook: An Introduction and the Using Jupyter 
Notebooks course. One neat thing about the Jupyter Notebook-style document is 
that the code cells you created in Spyder are very similar to the code cells in a 
Jupyter Notebook. 

Summarizing Your Experience in Spyder 

Now you have the basic tools to use Spyder as a replacement for the MATLAB 
integrated development environment. You know how to run code in the console 
or type code into a file and run the file. You also know where to look to see your 
directories and files, the variables that you‘ve defined, and the history of the 
commands you typed. 

Once you‘re ready to start organizing your code into modules and packages, 
you can check out the following resources: • Python Modules and Packages – An Introduction • How to Publish an Open-Source Python Package to PyPI • How to Publish Your Own Python Package to PyPI 

Spyder is a really big piece of software, and you‘ve only just scratched the 
surface. You can learn a lot more about Spyder by reading the official documentation, 
the troubleshooting and FAQ guide, and the Spyder wiki. 

LEARNING ABOUT PYTHON’S MATHEMATICAL LIBRARIES 

Now you‘ve got Python on your computer and you‘ve got an IDE where you 
feel at home. So how do you learn about how to actually accomplish a task in 
Python? With MATLAB, you can use a search engine to find the topic you‘re 
looking for just by including MATLAB in your query. With Python, you‘ll usually 
get better search results if you can be a bit more specific in your query than just 
including Python. 

You‘ll take the next step to really feeling comfortable with Python by learning 
about how Python functionality is divided into several libraries. You‘ll also learn 
what each library does so you can get top-notch results with your searches! 

Python is sometimes called a batteries-included language. This means that 
most of the important functions you need are already included when you install 
Python. For instance, Python has built-in math and statistics libraries that include 
the basic operations. 
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Sometimes, though, you want to do something that isn‘t included in the 
language. One of the big advantages of Python is that someone else has probably 
done whatever you need to do and published the code to accomplish that task. 
There are several hundred-thousand publicly available and free packages that you 
can easily install to perform various tasks. These range from processing PDF 
files to building and hosting an interactive website to working with highly optimized 
mathematical and scientific functions. 

Working with arrays or matrices, optimization, or plotting requires additional 
libraries to be installed. Fortunately, if you install Python with the Anaconda 
installer these libraries come preinstalled and you don‘t need to worry. Even if 
you‘re not using Anaconda, they are usually pretty easy to install for most operating 
systems. 

The set of important libraries you‘ll need to switch over from MATLAB are 
typically called the SciPy stack. At the base of the stack are libraries that provide 
fundamental array and matrix operations (NumPy), integration, optimization, signal 
processing, and linear algebra functions (SciPy), and plotting (Matplotlib). Other 
libraries that build on these to provide more advanced functionality 
include Pandas, scikit-learn, SymPy, and more. 

NumPy (Numerical Python) 

NumPy is probably the most fundamental package for scientific computing in 
Python. It provides a highly efficient interface to create and interact with multi- 
dimensional arrays. Nearly every other package in the SciPy stack uses or integrates 
with NumPy in some way. 

NumPy arrays are the equivalent to the basic array data structure in MATLAB. 
With NumPy arrays, you can do things like inner and outer products, transposition, 
and element-wise operations. NumPy also contains a number of useful methods 
for reading text and binary data files, fitting polynomial functions, many 
mathematical functions (sine, cosine, square root, and so on), and generating 
random numbers. 

The performance-sensitive parts of NumPy are all written in the C language, 
so they are very fast. NumPy can also take advantage of optimized linear algebra 
libraries such as Intel‘s MKL or OpenBLAS to further increase performance. 

SciPy (Scientific Python) 

The SciPy package (as distinct from the SciPy stack) is a library that provides 
a huge number of useful functions for scientific applications. If you need to do 
work that requires optimization, linear algebra or sparse linear algebra, discrete 
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Fourier transforms, signal processing, physical constants, image processing, or 
numerical integration, then SciPy is the library for you! Since SciPy implements 
so many different features, it‘s almost like having access to a bunch of the 
MATLAB toolboxes in one package. 

SciPy relies heavily on NumPy arrays to do its work. Like NumPy, many of 
the algorithms in SciPy are implemented in C or Fortran, so they are also very 
fast. Also like NumPy, SciPy can take advantage of optimized linear algebra 
libraries to further improve performance. 

Matplotlib (MATLAB-like Plotting Library) 

Matplotlib is a library to produce high-quality and interactive two-dimensional 
plots. Matplotlib is designed to provide a plotting interface that is similar to 
the plot() function in MATLAB, so people switching from MATLAB should find 
it somewhat familiar. Although the core functions in Matplotlib are for 2-D data 
plots, there are extensions available that allow plotting in three dimensions with 
the mplot3d package, plotting geographic data with cartopy, and many more listed 
in the Matplotlib documentation. 

Other Important Python Libraries 

With NumPy, SciPy, and Matplotlib, you can switch a lot of your MATLAB 
code to Python. But there are a few more libraries that might be helpful to know 
about. 

• Pandas provides a DataFrame, an array with the ability to name 

rows and columns for easy access. 

• SymPy provides symbolic mathematics and a computer algebra 

system. 

• scikit-learn provides many functions related to machine learning 

tasks. 

• scikit-image provides functions related to image processing, 

compatible with the similar library in SciPy. 

• Tensorflow provides a common platform for many machine learning 

tasks. 

• Keras provides a library to generate neural networks. 

• multiprocessing provides a way to perform multi-process based 

parallelism. It’s built into Python. 

• Pint provides a unit library to conduct automatic conversion between 

physical unit systems. 
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• PyTables provides a reader and  writer for HDF5 format  files. 

• PyMC3 provides Bayesian statistical modeling and probabilistic 

machine learning functionality. 

SYNTAX DIFFERENCES BETWEEN MATLAB® AND PYTHON 

You‘ll learn how to convert your MATLAB code into Python code. You‘ll 
learn about the main syntax differences between MATLAB and Python, see an 
overview of basic array operations and how they differ between MATLAB and 
Python, and find out about some ways to attempt automatic conversion of your 
code. 

The biggest technical difference between MATLAB and Python is that in 
MATLAB, everything is treated as an array, while in Python everything is a more 
general object. For instance, in MATLAB, strings are arrays of characters or arrays 
of strings, while in Python, strings have their own type of object called str. This 
has profound consequences for how you approach coding in each language, as 
you‘ll see below. 

With that out of the way, let‘s get started! To help you, the sections below 
are organized into groups based on how likely you are to run into that syntax. 

You Will Probably See This Syntax 

The examples in this chapter represent code that you are very likely to see 
in the wild. These examples also demonstrate some of the more basic Python 
language features. You should make sure that you have a good grasp of these 
examples before moving on. 

Comments Start With # in Python 

In MATLAB, a comment is anything that follows a percent sign (%) on a line. 
In Python, comments are anything that follow the hash or pound sign (#). You 
already saw a Python comment. In general, the Python interpreter ignores the 
content of comments, just like the MATLAB interpreter, so you can write whatever 
content you want in the comment. One exception to this rule in Python is the 
example you saw earlier in the section about Spyder: 
# -*- coding: utf-8 -*- 

When the Python interpreter reads this line, it will set the encoding that it uses 
to read the rest of the file. This comment must appear in one of the first two lines 
of the file to be valid. 

Another difference between MATLAB and Python is in how inline 
documentation is written. In MATLAB, documentation is written at the start of 
a function in a comment, like the code sample below: 
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function [total] = addition(num_1,num_2) 

% ADDITION Adds two numbers together 

% TOTAL = ADDITION(NUM_1,NUM_2) adds NUM_1 and NUM_2 
together 

% 

% See also SUM and PLUS 

However, Python does not use comments in this way. Instead, Python has an 
idea called documentation strings or docstrings for short. In Python, you would 
document the MATLAB function shown above like this: 
def addition(num_1, num_2): 

“””Adds two numbers together. 
Example 

———- 
>>> total = addition(10, 20) 

>>> total 

30 

“”” 
Notice in this code that the docstring is between two sets of three quote 

characters (―‖‖). This allows the docstring to run onto multiple lines with the 
whitespace and newlines preserved. The triple quote characters are a special case 
of string literals. Don‘t worry too much about the syntax of defining a function 
yet. 

Whitespace at the Beginning of a Line Is Significant in Python 

When  you  write  code  in   MATLAB,  blocks  like if   statements 
for and while loops, and function definitions are finished with the end keyword. 
It is generally considered a good practice in MATLAB to indent the code within 
the blocks so that the code is visually grouped together, but it is not syntactically 
necessary. For example, the following two blocks of code are functionally equivalent 
in MATLAB: 
1num = 10; 

2 

3if num == 10 

4disp(“num is equal to 10”) 
5else 

6disp(“num is not equal to 10”) 
7end 

8 
9disp(“I am now outside the if block”) 
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In this code, you are first creating num to store the value 10 and then checking 
whether the value of num is equal to 10. If it is, you are displaying the phrase num 
is equal to 10 on the console from line 2. Otherwise, the else clause will kick in 
and display num is not equal to 10. Of course, if you run this code, you will see 
the num is equal to 10 output and then I am now outside the if block. 

Now you should modify your code so it looks like the sample below: 
1num = 10; 

2 

3if num == 10 

4 disp(“num is equal to 10”) 
5else 

6 disp(“num is not equal to 10”) 
7end 

8 

9disp(“I am now outside the if block”) 
In this code, you have only changed lines 3 and 5 by adding some spaces or 

indentation in the front of the line. The code will perform identically to the 
previous example code, but with the indentation, it is much easier to tell what 
code goes in the if part of the statement and what code is in the else part of the 
statement. 

In Python, indentation at the start of a line is used to delimit the beginning 
and end of class and function definitions, if statements, and for and while loops. 
There is no end keyword in Python. This means that indentation is very important 
in Python! 

In addition,   in   Python   the   definition   line   of   an if/else/elif statement, 
a for or while loop, a function, or a class is ended by a colon. In MATLAB, the 
colon is not used to end the line. 

Consider this code example: 
1num = 10 

2 

3if num == 10: 

4 print(“num is equal to 10”) 
5else: 

6 print(“num is not equal to 10”) 
7 

8print(“I am now outside the if block”) 
On the first line, you are defining num and setting its value to 10. On line 2, 

writing if num == 10: tests the value of num compared to 10. Notice the colon at 
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the end of the line. Next, line 3 must be indented in Python‘s syntax. On that line, 
you are using print() to display some output to the console, in a similar way 
to disp() in MATLAB. You‘ll read more about print() versus disp(). 

On line 4, you are starting the else block. Notice that the e in the else keyword 
is vertically aligned with the i in the if keyword, and the line is ended by a colon. 
Because the else is dedented relative to print() on line 3, and because it is aligned 
with the if keyword, Python knows that the code within the if part of the block 
has finished and the else part is starting. Line 5 is indented by one level, so it forms 
the block of code to be executed when the else statement is satisfied. 

Lastly, on line 6 you are printing a statement from outside the if/else block. 
This statement will be printed regardless of the value of num. Notice that 
the p in print() is vertically aligned with the i in if and the e in else. This is how 
Python knows that the code in the if/else block has ended. If you run the code 
above, Python will display num is equal to 10 followed by I am now outside the 
if block. 

Now you should modify the code above to remove the indentation and see 
what happens. If you try to type the code without indentation into the Spyder/ 
IPython console, you will get an IndentationError: 
In [1]: num = 10 

In [2]: if num == 10: 

...: print(“num is equal to 10”) 
File “<ipython-input-2-f453ffd2bc4f>”, line 2 

print(“num is equal to 10”) 
^ 

IndentationError: expected an indented block 

In this code, you first set the value of num to 10 and then tried to write 
the if statement without indentation. In fact, the IPython console is smart and 
automatically indents the line after the if statement for you, so you‘ll have to delete 
the indentation to produce this error. 

When you‘re indenting your code, the official Python style guide called PEP 
8 recommends using 4 space characters to represent one indentation level. Most 
text editors that are set up to work with Python files will automatically insert 4 
spaces if you press the Tab key on your keyboard. You can choose to use the tab 
character for your code if you want, but you shouldn‘t mix tabs and spaces or 
you‘ll probably end up with a TabError if the indentation becomes mismatched. 

Conditional Statements Use elif in Python 

In MATLAB, you can construct conditional statements with if, elseif, and else. 
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These kinds of statements allow you to control the flow of your program in 
response to different conditions. 

You should try this idea out with the code below, and then compare the 
example of MATLAB vs Python for conditional statements: 
1num = 10; 

2if num == 10 

3 disp(“num is equal to 10”) 
4elseif num == 20 

5 disp(“num is equal to 20”) 
6else 

7 disp(“num is neither 10 nor 20”) 
8end 

In this code block, you are defining num to be equal to 10. Then you are 
checking if the value of num is 10, and if it is, using disp() to print output to the 
console. If num is 20, you are printing a different statement, and if num is neither 
10 nor 20, you are printing the third statement. 

In Python, the elseif keyword is replaced with elif: 
1num = 10 

2if num == 10: 

3 print(“num is equal to 10”) 
4elif num == 20: 

5 print(“num is equal to 20”) 
6else: 

7 print(“num is neither 10 nor 20”) 
This code block is functionally equivalent to the previous MATLAB code 

block. There are 2 main differences. On line 4, elseif is replaced with elif, and 
there is no end statement to end the block. Instead, the if block ends when the next 
dedented line of code is found after the else. You can read more in the Python 
documentation for if statements. 

Calling Functions and Indexing Sequences Use Different Brackets 
in Python 

In MATLAB, when you want to call a function or when you want to index 
an array, you use round brackets (()), sometimes also called parentheses. Square 
brackets ([]) are used to create arrays. 

You can test out the differences in MATLAB vs Python with the example code 
below: 
>> arr = [10, 20, 30]; 
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>> arr(1) 

ans = 

10 

>> sum(arr) 

ans = 

60 

In this code, you first create an array using the square brackets on the right 
side of the equal sign. Then, you retrieve the value of the first element by arr(1), 
using the round brackets as the indexing operator. On the third input line, you 
are calling sum() and using the round brackets to indicate the parameters that 
should be passed into sum(), in this case just arr. MATLAB computes the sum of 
the elements in arr and returns that result. 

Python uses separate syntax for calling functions and indexing sequences. In 
Python, using round brackets means that a function should be executed and using 
square brackets will index a sequence: 
In [1]: arr = [10, 20, 30] 

In [2]: arr[0] 

Out[2]: 10 

In [3]: sum(arr) 

Out[3]: 60 

In this code, you are defining a Python list on input line 1. Python lists have 
some important distinctions from arrays in MATLAB and arrays from the NumPy 
package. 

On the input line 2, you are displaying the value of the first element of the 
list with the indexing operation using square brackets. On input line 3, you are 
calling sum() using round brackets and passing in the list stored in arr. This results 
in the sum of the list elements being displayed on the last line. Notice that Python 
uses square brackets for indexing the list and round brackets for calling functions. 

The First Index in a Sequence Is 0 in Python 

In MATLAB, you can get the first value from an array by using 1 as the index. 
This style follows the natural numbering convention and starts how you would 
count the number of items in the sequence. You can try out the differences of 
MATLAB vs Python with this example: 
>> arr = [10, 20, 30]; 

>> arr(1) 

ans = 

10 

>> arr(0) 



Matlab and Python in Machine Learning 97 
 

 

 

Array indices must be positive integers or logical values. 

In this code, you are creating an array with three numbers: 10, 20, and 30. 
Then you are displaying the value of the first element with the index 1, which 
is 10. Trying to access the zeroth element results in an error in MATLAB, as shown 
on the last two lines. 

In Python, the index of the first element in a sequence is 0, not 1: 
In [1]: arr = [10, 20, 30] 

In [2]: arr[0] 

Out[2]: 10 

In [3]: arr[1] 

Out[3]: 20 

In [4]: a_string = “a string” 
In [5]: a_string[0] 

Out[5]: „a‟ 
In [6]: a_string[1] 

Out[6]: „ „ 
In this code, you are defining arr as a Python list with three elements on input 

line 1. On input line 2, you are displaying the value of the first element of the 
list, which has the index 0. Then you are displaying the second element of the 
list, which has the index 1. 

On input lines 4, 5, and 6, you are defining a_string with the contents ‖a 
string‖ and then getting the first and second elements of the string. Notice that 
the second element (character) of the string is a space. This demonstrates a general 
Python feature, that many variable types operate as sequences and can be indexed, 
including lists, tuples, strings, and arrays. 

The Last Element of a Sequence Has Index -1 in Python 

In MATLAB, you can get the last value from an array by using end as the 
index. This is really useful when you don‘t know how long an array is, so you 
don‘t know what number to access the last value. 

Try out the differences in MATLAB vs Python with this example: 
>> arr = [10, 20, 30]; 

>> arr(end) 

ans = 

30 

In this code, you are creating an array with three numbers, 10, 20, and 30. 
Then you are displaying the value of the last element with the index end, which 
is 30. 
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In Python, the last value in a sequence can be retrieved by using the index - 
1: 
In [1]: arr = [10, 20, 30] 

In [2]: arr[-1] 

Out[2]: 30 

In this code, you are defining a Python list with three elements on input line 
1. On input line 2, you are displaying the value of the last element of the list, 
which has the index -1 and the value 30. 

In fact, by using negative numbers as the index values you can work your way 
backwards through the sequence: 
In [3]: arr[-2] 

Out[3]: 20 

In [4]: arr[-3] 

Out[4]: 10 

In this code, you are retrieving the second-to-last and third-to-last elements 
from the list, which have values of 20 and 10, respectively. 

Exponentiation Is Done With ** in Python 

In MATLAB, when you want to raise a number to a power you use the caret 
operator (^). The caret operator is a binary operator that takes two numbers. 
Other binary operators include addition (+), subtraction (-), multiplication (*), and 
division (/), among others. The number on the left of the caret is the base and 
the number on the right is the exponent. 

Try out the differences of MATLAB vs Python with this example: 
>> 10^2 

ans = 

100 

In this code, you are raising 10 to the power of 2 using the caret resulting 
an answer of 100. 

In Python, you use two asterisks (**) when you want to raise a number to 
a power: 
In [1]: 10 ** 2 

Out[1]: 100 

In this code, you are raising 10 to the power of 2 using two asterisks resulting 
an answer of 100. 

Notice that there is no effect of including spaces on either side of the asterisks. 
In Python, the typical style is to have spaces on both sides of a binary operator. 
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The Length of a Sequence Is Found With len() in Python 

In MATLAB, you can get the length of an array with length(). This function 
takes an array as the argument and returns back the size of the largest dimension 
in the array. You can see the basics of this function with this example: 
>> length([10, 20, 30]) 

ans = 

3 

>> length(“a string”) 
ans = 

1 

In this code, on the first input line you are finding the length of an array with 
3 elements. As expected, length() returns an answer of 3. On the second input line, 
you are finding the length of the string array that contains one element. Notice 
that MATLAB implicitly creates a string array, even though you did not use the 
square brackets to indicate it is an array. 

In Python, you can get the length of a sequence with len(): 
In [1]: len([10, 20, 30]) 

Out[1]: 3 

In [2]: len(“a string”) 
Out[2]: 8 

In this code, on the input line 1 you are finding the length of a list with 3 
elements. As expected, len() returns a length of 3. On input line 2, you are finding 
the length of a string as the input. In Python, strings are sequences and len() counts 
the number of characters in the string. In this case, a string has 8 characters. 

Console Output Is Shown With print() in Python 

In MATLAB, you can use disp(), fprintf(), and sprintf() to print the value of 
variables and other output to the console. In Python, print() serves a similar 
function as disp(). Unlike disp(), print() can send its output to a file similar 
to fprintf(). 

Python‘s print() will display any number of arguments passed to it, separating 
them by a space in the output. This is different from disp() in MATLAB, which 
only takes one argument, although that argument can be an array with multiple 
values. The following example shows how Python‘s print() can take any number 
of arguments, and each argument is separated by a space in the output: 

In [1]: val_1 = 10 

In [2]: val_2 = 20 
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In [3]: str_1 = ―any number of arguments‖ 

In [4]: print(val_1, val_2, str_1) 

10 20 any number of arguments 

In this code, the input lines 1, 2, and 3 define val_1, val_2, and str_1, 
where val_1 and val_1 are integers, and str_1 is a string of text. On input line 4, 
you are printing the three variables using print(). The output below this line the 
value of the three variables are shown in the console output, separated by spaces. 

You can control the separator used in the output between arguments to print() by 
using the sep keyword argument: 

In [5]: print(val_1, val_2, str_1, sep=‖; ―) 
10; 20; any number of arguments 

In this code, you are printing the same three variables but setting the separator 
to be a semicolon followed by a space. This separator is printed between the first 
and second and the second and third arguments, but not after the third argument. 
To control the character printed after the last value, you can use the end keyword 
argument to print(): 

In [6]: print(val_1, val_2, str_1, sep=‖; ―, end=‖;‖) 
10; 20; any number of arguments; 

In this code, you have added the end keyword argument to print(), setting it 
to print a semicolon after the last value. This is shown in the output on line below 
the input. 

Like disp() from MATLAB, print() cannot directly control the output format 
of variables and relies on you to do the formatting. If you want more control over 
the format of the output, you should use f-strings or str.format(). In these strings, 
you can use very similar formatting style codes as fprintf() in MATLAB to format 
numbers: 

In [7]: print(f‖The value of val_1 = {val_1:8.3f}‖) 
The value of val_1 = 10.000 

In [8]: # The following line will only work in Python 3.8 

In [9]: print(f‖The value of {val_1=} and {val_2=}‖) 
The value of val_1=10, and val_2=20 

In this code, input line 7 includes an f-string, indicated by the f to start the 
string. This means that Python will substitute the value of any variables it encounters 
between {}, or curly braces, within the string. You can see that in the output, 
Python has replaced {val_1:8.3f} with a floating point number with 8 columns in 
the output and 3 digits of precision. 
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Input line 9 demonstrates a new feature in Python 3.8. If a variable name is 
immediately followed by an equals sign inside curly braces, the name of the 
variable and the value will be printed automatically. 

You can take a deep dive into Python‘s print() by checking out The Ultimate 
Guide to Python Print. 

You Will Probably See These, but You Can Learn Them When 
You Need To 

You‘ll find examples of code that you‘ll probably see in the wild, but you can 
wait a little while to understand them if you want. These examples use some 
intermediate features in Python but are still in the core of how Python works. 

Function Definitions Start With def and return Values in Python 

In MATLAB, you can define a function by placing the function keyword at the 
start of a line. This is followed by the name of any output variables, an equals 
(=) sign, then the name of the function and any input arguments in parentheses. 
Within the the function you have to assign to any variables you specified in the 
definition line as outputs. A simple example MATLAB function is shown below: 

1function [total] = addition(num_1,num_2) 

2total = num_1 + num_2; 

3end 

In this code, you see the function definition on line 1. There is only one output 
variable, called total, for this function. The name of the function is addition and 
it takes two arguments, which will be assigned the names num_1 and num_2 in 
the function body. Line 2 is the implementation of the function. The value of total is 
set equal to the sum of num_1 and num_2. The last line of the function is 
the end keyword that tells the MATLAB interpreter the definition of the function 
has finished. To use this function in MATLAB, you should save it in a file 
called addition.m, matching the name of the function. Alternatively, it can be 
placed in file with other commands provided that the function definition is the 
last thing in the file and the file is not named addition.m. Then, you can run the 
function by typing the following code in the MATLAB console: 

>> var_1 = 20; 

>> var_2 = 10; 

>> sum_of_vars = addition(var_1,var_2) 

sum_of_vars = 

30 
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In this code, you have defined two variables called var_1 and var_2 that hold 
the values 20 and 10, respectively. Then you created  a third variable 
called sum_of_vars that stores the output from addition(). Check out the Variable 

explorer, and you‘ll see that sum_of_vars has the value 30, as expected. Notice 
that the name sum_of_vars did not have to be the same name as the output variable 
used in the function definition, which was total. 

MATLAB does not require a function to provide an output value. In this case, 
you would remove the output variable and the equals sign from the function 
definition. Modify your addition.m file so that the code looks like this: 

1function addition(num_1,num_2) 

2total = num_1 + num_2; 

3end 

The only change in this code from the earlier code is that you deleted the [total] 
= from line 1, the other lines are exactly the same. Now if you try to assign the 
result of calling this function to a variable, MATLAB will generate an error in 
the console: 

>> var_1 = 20; 

>> var_2 = 10; 

>> sum_of_vars = addition(var_1,var_2); 

Error using addition 

Too many output arguments. 

In this code, you defined the same two variables var_1 and var_2 as before and 
called addition() in the same way as before. However, since addition() no longer 
specifies an output variable, MATLAB generates an error message that there are 
too many output arguments. Clicking on the word addition will open the definition 
of the function for you to edit or view the source code to fix the problem. In Python, 
the def keyword starts a function definition. The def keyword must be followed 
by the name of the function and any arguments to the function inside parentheses, 
similar to MATLAB. The line with def must be ended with a colon (:). 

Starting on the next line, the code that should be executed as part of the 
function must be indented one level. In Python, the function definition ends when 
a line of code starts at the same indentation level as the def keyword on the first 
line. 

If your function returns some output back to the caller, Python does not require 
that  you  specify  a name  for  an output  variable.  Instead,  you  use 
the return statement to send an output value from the function. 
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An equivalent function in Python to your first addition() example with an 
output variable is shown below: 

1def addition(num_1, num_2): 

2 total = num_1 + num_2 

3 return total 

In this code, you see the def keyword followed by the function name and the 
two arguments num_1 and num_2 on line 1. On line 2 you can see the creation 
of a new variable total to store the sum of num_1 and num_2, and on line 3 the 
value of total is returned to the point where this function was called. Notice that 
lines 2 and 3 are indented by 4 spaces because they make up the body of the 
function. 

The variable that stores the sum of num_1 and num_2 can have any name, it 
doesn‘t have to be called total. In fact, you don‘t need to create a variable there 
at all. You can simplify your previous function definition by eliminating total and 
simply returning the value of num_1 + num_2: 

1def addition(num_1, num_2): 

2    return num_1 + num_1 

Line 1 in this code is the same as it was before, you have only changed line 
2 and deleted line 3. Line 2 now computes the value of num_1 + num_2 and returns 
that value back to the caller of the function. Line 2 is indented by 4 spaces because 
it makes up the body of the function. 

To use this function in Python, you do not need to save it in a file with a special 
name. You can place the function definition in any Python file, at any point in 
the file. There is no restriction that the function definition has to be last. In fact, 
you can even define functions right from the console, which is not possible in 
MATLAB. 

Open Spyder and in the Console pane type: 

>>> 

In [1]: def addition(num_1, num_2): 

On this line of code you are creating the function definition. In the Spyder/ 
IPython console, once you start a function definition and press Enter, the start of 
the line becomes three dots and the cursor is automatically indented. Now you 
can type the remainder of the function definition. You‘ll have to press Enter twice 
to complete the definition: 

>>> 

In [1]: def addition(num_1, num_2): 
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...: return num_1 + num_2 

...: 

In this code, you have the definition of the function on the first line and the 
body of the function on the second line. The console automatically adds the ...: at 
the start of the lines to indicate these are continuation lines that apply to the 
function definition. 

Once you‘ve completed the definition, you can execute the function from the 
console as well. You should type this code: 

In [2]: var_1 = 20 

In [3]: var_2 = 10 

In [4]: sum_of_vars = addition(var_1, var_2) 

In [5]: sum_of_vars 

Out[5]: 30 

In this code, you first create two variables var_1 and var_2 that store the 
values you want to add together. Then, on input line 4, you assign sum_of_vars to 
the result that is returned from addition(). On input line 5, you are outputting the 
value of sum_of_vars to the console screen. This displays 30, the sum of 10 and 
20. 

In Python, if you do not explicitly put a return statement, your function will 
implicitly return the special value None. You should change your Python definition 
of addition() to see how this works. In the Spyder/IPython console, type the 
following: 

In [6]: def addition(num_1, num_2): 

...: total = num_1 + num_2 

...: 

In this code, you have the same def line on input line 6. You have changed 
the first continuation line to assign the result of the addition to total instead of 
returning. Now you should see what happens when we execute this modified 
function: 

In [7]: sum_of_vars = addition(var_1, var_2) 

In [8]: sum_of_vars 

In [9]: 

In this code, on input line 7 you are assigning sum_of_vars to be the returned 
value from addition(). Then, on input line 8, you are showing the value 
of sum_of_vars on the console screen, just like before. This time though, there is 
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no output! By default, Python prints nothing when it outputs a variable whose 
value is None. You can double check the value of the sum_of_vars variable by 
looking at the Variable explorer. In the Type column, it should list NoneType, 
telling you that sum_of_vars is the special None value. 

Functions Accept Positional and Keyword Arguments in Python 

In MATLAB, functions have input arguments specified on the first line, in 
the function definition. When you call a function in MATLAB, you can pass from 
zero up to the number of arguments that are specified. In the body of the function, 
you can check the number of input arguments the caller actually passed to execute 
different code. This is useful when you want different arguments to have different 
meaning, like in the example below: 

1function [result] = addOrSubtract(num_1,num_2,subtract) 

2% ADDORSUBTRACT Add or subtract two value 

3% RESULT = addOrSubtract(NUM_1,NUM_2) adds NUM_1 and NUM_2 
together 

4% 

5% RESULT = addOrSubtract(NUM_1,NUM_2,true) subtracts NUM_2 
from NUM_1 

6 

7 switch nargin 

8 case 2 

9 result = num_1 + num_2; 

10 case 3 

11 result = num_1 - num_2; 

12 otherwise 

13 result = 0; 

14 end 

15end 

In this code, you are defining a function with three possible input arguments. 
On line 7, you are starting a switch/case block that determines how many input 
arguments were passed to the function by using the special variable nargin. This 
variable stores the actual number of arguments the caller passed into the function. 

In your code above, you are defining three cases: 

1. If the number of input arguments is 2, you are 

adding num_1 and num_2 together. 
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2. If the number of input arguments is 3, you are 

subtracting num_2 from num_1. 

3. If fewer than 2 arguments are passed, the output will be 0. 

If more than 3 arguments are passed, MATLAB will raise an error. 

Now you should experiment with this function. Save the code above into a 
file called addOrSubtract.m and then on the MATLAB console, try the version 
with two input arguments: 

>> addOrSubtract(10,20) 

ans = 

30 

In this code, you are calling addOrSubtract() with two arguments, so the 
arguments are added together, resulting  in an answer  of 30. Next,  try 
calling addOrSubtract() with three arguments: 

>>> 

>> addOrSubtract(10,20,true) 

ans = 

-10 

In this code, you used three input arguments, and found that the second 
argument was subtracted from the first, resulting in an answer of -10. Third, try 
calling addOrSubtract() with one argument: 

>> addOrSubtract(10) 

ans = 

0 

In this code, you used one input argument and found the answer was 0, because 
MATLAB only found one argument to the function and used the otherwise case. 
Finally, try calling addOrSubtract() with four arguments: 

>> addOrSubtract(10,20,true,30) 

Error using addOrSubtract 

Too many input arguments. 

In this code, you find that MATLAB raises an error because there were more 
input arguments passed than were defined in the function line. 

There are four key takeaways from this example with MATLAB: 

1. There is only one kind of argument in a function definition. 

2. The meaning of an argument in the code is determined by its 

position in the function definition. 
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3. The maximum number of arguments that can be passed to a function 

is determined by the number of arguments specified in the function 

definition. 

4. Any number of arguments up to the maximum can be passed by 

the caller. 

In Python, there are two kinds of arguments you can specify when defining 
a function. These are required and optional arguments. The key difference between 
these is that required arguments must be passed when a function is called, while 
optional are given a default value in the function definition. 

You can see the differences between these two styles in the next example: 

1def add_or_subtract(num_1, num_2, subtract=False): 

2 ―‖‖Add or subtract two numbers, depending on the value of subtract.‖‖‖ 

3 if subtract: 

4 return num_1 - num_2 

5 else: 

6 return num_1 + num_2 

In this code, you are defining a function called add_or_subtract() that has three 
arguments: num_1, num_2, and subtract. In the function definition, you can see 
the two types of arguments. The first two arguments, num_1 and num_2, are 
required arguments. 

The third argument, subtract, has a default value assigned to it by specifying 
a value after an equals sign in the function definition. This means that when the 
function is called, passing a value for subtract is optional. If no value is passed, 
the default as defined in the function definition line will be used. In this case, 
the default value is False. 

In the body of the function, you are testing the value of subtract with 
the if statement to determine whether addition or subtraction should be performed. 
If subtract is True, num_2 will  be subtracted  from num_1.  Otherwise, 
if subtract is False, then num_1 will be added to num_2. In either case, the result 
of the arithmetic operation will be returned to the caller. 

In addition to the two types of arguments you can use when defining a 
function, there are two kinds of arguments you can specify when calling a function. 
These are called positional and keyword arguments. You can see the difference 
between these in the following example. First, try passing only two arguments to 
the function: 

In [1]: add_or_subtract(10, 20) 
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Out[1]: 30 

In this code, you passed only two arguments to add_or_subtract(), 10 and 20. 
In this case, you passed these values as positional arguments, and the meaning 
of the arguments is defined by their position in the function call. 

Since only the two required arguments were passed, subtract will take on the 
default value, which is False. Therefore, 10 and 20 will be added together, which 
you can see on the output line. Next, try passing a value for subtract: 

In [2]: add_or_subtract(10, 20, False) 

Out[2]: 30 

In [3]: add_or_subtract(10, 20, True) 

Out[3]: -10 

In this code, you passed three arguments to add_or_subtract(), with two different 
values for the subtract argument. First, you passed False on input line 2. The result 
was the addition of 10 and 20. Then, you passed True on input line 3, resulting 
in the difference between 10 and 20, or -10. 

In these examples, you saw that it is possible in Python to define default values 
for arguments to a function. This means when you call the function, any arguments 
with default values are optional and do not have to be passed. If no value is passed 
for any default arguments, the default value will be used. However, you must pass 
a value for every argument without a default value. Otherwise, Python will raise 
an error: 

In [4]: add_or_subtract(10) 

Traceback (most recent call last): 

File ―<ipython-input-4-f9d1f2ae4494>‖, line 1, in <module> 

add_or_subtract(10) 

TypeError: add_or_subtract() missing 1 required positional argument: ‗num_2‘ 
In this code, you have only passed one of the two required arguments 

to add_or_subtract(), so Python raises a TypeError. The error message tells you 
that you did not pass a value for num_2, because it does not have a default value. 

In these last three example, you have used positional arguments, so which 
parameter is assigned to the variables in the function depends on the order they 
are passed. There is another method to pass arguments to functions in Python, 
called keyword arguments. To use keyword arguments, you specify the name of 
the argument in the function call: 

In [5]: add_or_subtract(num_1=10, num_2=20, subtract=True) 
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Out[5]: -10 

In this code, you have used keyword arguments for all three arguments 
to add_or_subtract(). Keyword arguments are specified by stating the argument 
name, then an equals sign, then the value that argument should have. One of the 
big advantages of keyword arguments is that they make your code more explicit. 
(As the Zen of Python says, explicit is better than implicit.) 

However, they make the code somewhat longer, so it‘s up to your judgement 
when to use keyword arguments or not. 

Another benefit of keyword arguments is that they can be specified in any 
order: 

In [6]: add_or_subtract(subtract=True, num_2=20, num_1=10) 

Out[6]: -10 

In this code, you have specified the three arguments for add_or_subtract() as 
keyword arguments, but the order is different from in the function definition. 
Nonetheless, Python connects the right variables together because they are specified 
as keywords instead of positional arguments. 

You can also mix positional and keyword arguments together in the same 
function call. If positional and keyword arguments are mixed together, the positional 
arguments must be specified first, before any keyword arguments: 

In [7]: add_or_subtract(10, 20, subtract=True) 

Out[7]: -10 

In this code, you have specified the values for num_1 and num_2 using 
positional arguments, and the value for subtract using a keyword argument. This 
is probably the most common case of using keyword arguments, because it 
provides a good balance between being explicit and being concise. 

Finally, there is one last benefit of using keyword arguments and default 
values. Spyder, and other IDEs, provide introspection of function definitions. This 
will tell you the names of all of the defined function arguments, which ones have 
default arguments, and the value of the default arguments. This can save you time 
and make your code easier and faster to read. 

There Are No switch/case Blocks in Python 

In MATLAB, you can use switch/case blocks to execute code by checking the 
value of a variable for equality with some constants. This type of syntax is quite 
useful when you know you want to handle a few discrete cases. Try out a switch/ 
case block with this example: 
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num = 10; 

switch num 

case 10 

disp(―num is 10‖) 
case 20 

disp(―num is 20‖) 
otherwise 

disp(―num is neither 10 nor 20‖) 
end 

In this code, you start by defining num and setting it equal to 10 and on the 
following lines you test the value of num. This code will result in the output num 
is 10 being displayed on the console, since num is equal to 10. 

This syntax is an interesting comparison of MATLAB vs Python because 
Python does not have a similar syntax. Instead, you should use an if/elif/else block: 

num = 10 

if num == 10: 

print(―num is 10‖) 
elif num == 20: 

print(―num is 20‖) 
else: 

print(―num is neither 10 nor 20‖) 
In this code, you start by defining num and setting it equal to 10. On the next 

several lines you are writing an if/elif/else block to check the different values that 
you are interested in. 

Namespaces Are One Honking Great Idea in Python 

In MATLAB, all functions are found in a single scope. MATLAB has a defined 
search order for finding functions within the current scope. If you define your own 
function for something that MATLAB already includes, you may get unexpected 
behavior. 

As you saw in the Zen of Python, namespaces are one honking great 
idea. Namespaces are a way to provide different scopes for names of functions, 
classes, and variables. This means you have to tell Python which library has the 
function you want to use. This is a good thing, especially in cases where multiple 
libraries provide the same function. 
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For instance, the built-in math library provides a square root function, as does 
the more advanced NumPy library. Without namespaces, it would be more difficult 
to tell Python which square root function you wanted to use. 

To tell Python where a function is located, you first have to import the library, 
which creates the namespace for that library‘s code. Then, when you want to use 
a function from the library, you tell Python which namespace to look in: 

In [1]: import math 

In [2]: math.sqrt(4) 

Out[2]: 2.0 

In this code, on input line 1 you imported the math library that is built-in to 
Python. Then, input line 2 computes the square root of 4 using the square root 
function from within the math library. The math.sqrt() line should be read as ―from 
within math, find sqrt().‖ 

The import keyword searches for the named library and binds the namespace 
to the same name as the library by default. You can read more about how Python 
searches for libraries in Python Modules and Packages – An Introduction. 

You can also tell Python what name it should use for a library. For instance, 
it is very common to see numpy shortened to np with the following code: 

In [3]: import numpy as np 

In [4]: np.sqrt(4) 

Out[4]: 2.0 

In this code, input line 3 imports NumPy and tells Python to put the library 
into the np namespace. Then, whenever you want to use a function from NumPy, 
you use the np abbreviation to find that function. On input line 4, you are computing 
the square root of 4 again, but this time, using np.sqrt(). np.sqrt() should be read 
as ―from within NumPy, find sqrt().‖ 

There are two main caveats to using namespaces where you should be careful: 

1. You should not name a variable with the same name as one of the 

functions built into Python. You can find a complete list of these 

functions in the Python documentation. The most common variable 

names that are also built-in functions and should not be used 

are dir, id, input, list, max, min, sum, str, type, and vars. 

2. You should not name a Python file (one with the extension .py) with 

the same name as a library that you have installed. In other words, 

you should not create a Python file called math.py. This is because 

Python searches the current working directory first when it tries to 
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import a library. If you have a file called math.py, that file will be 

found before the built-in math library and you will probably see 

an AttributeError. 
 
 

 
 

Machine learning is a branch of artificial intelligence that enables the systems 
to learn and improve their performance on their own by acclimatizing themselves 
to the experience received from inputs by the user over time. 

This process of improving with experience happens without any explicit 
programs being executed for the same. The concept of machine learning is the 
focus on the progress of computer systems that can access a given set of data and 
then use it to learn and enhance itself automatically. 

Of late two programming languages have seen much difference of opinion 
concerning their role in machine learning. Many individuals try to search MatLab 
vs Python for machine learning. 

FACTORS OF PREFERENCES FOR UTILIZING PYTHON FOR 
MACHINE LEARNING 

Free and open-source 

Even though few of them are, actually, free and open-source, it‘s as yet one 
of the highlights of Python that makes it stand apart as a programming language. 
You can download Python for nothing, which implies that Python engineers can 
download its source code, cause adjustments to it to and even convey it. Python 
accompanies a broad assortment of libraries that help you to do your undertakings. 

Magnificent Collection of Inbuilt Libraries 

Python offers an immense number of in-assembled libraries that the Python 
advancement organizations can use for information control, information mining, 
and AI, for example, • NumPy — it is used for the logical count. • Scikit-learn — it is used for information mining and investigation which enhances Python’s AI ease of use. Panda — this library offers 

engineers with superior structures and information examination 

apparatuses that assist them with lessening the venture usage time. • SciPy — this library is used for cutting edge calculation. • Pybrain — the developer utilizes this library for AI. 
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Moderate Learning Curve 

Numerous individuals guarantee that Python is extremely easy to comprehend, 
and given the usefulness and versatility it offers, Python as a programming 
language is anything but difficult to learn and utilize. It centers around code clarity 
and is an adaptable and very much organized language. How hard Python is, relies 
upon you. For example, if a beginner is given acceptable examination material 
and a not too bad instructor, Python can without much of a stretch be comprehended. 
Indeed, even good Python engineers can instruct Python to a novice. 

Universally useful programming language 

What it implies is that Python can be utilized to construct pretty much 
anything. It is amazingly valuable for backend Web Development, Artificial 
Intelligence, Scientific Computing, and Data Analysis. Python is be utilized for 
web advancement, framework activities, Server and Administrative apparatuses, 
logical demonstrating, and can likewise be utilized by a few engineers to construct 
profitability devices, work area applications, and games. 

Simple to coordinate 

Python is being utilized as a coordination language in numerous spots, to stick 
the current parts together. Python is anything but difficult to coordinate with other 
lower-level dialects, for example, C, C++, or Java. Additionally, it is anything but 
difficult to consolidate a Python based-stack with information researcher‘s work, 
which permits it to bring productivity into creation. 

Simple to make models 

As we realize that Python is easy to learn and can create sites rapidly. Python 
requires less coding, which implies that you can make models and test your ideas 
rapidly and effectively in Python when contrasted with a few other programming 
dialects. Creating models spares engineers‘ time and diminishes your organization‘s 
general use also. 

POINTS OF INTEREST IN USING MATLAB FOR MACHINE 
LEARNING 

Extension For Preprocessing 

Matlab gives scope for preprocessing datasets effectively with space explicit 
applications for sound, video, and picture information. Clients can picture, check, 
and repair issues before preparing the Deep Network Designer application to 
manufacture complex system models or adjust prepared systems for move learning. 
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Multi-Program Deployment 

Matlab can utilize profound learning models wherever including CUDA, C 
code, endeavor frameworks, or the cloud. It gives an extraordinary presentation 
where a client can deliver code that supports upgraded libraries like Intel(MKL- 
DNN), NVIDIA (TensorRT, cuDNN), and (ARM Compute Library) to manufacture 
deplorable examples with elite surmising action. 

Profound Learning Toolbox 

Profound Learning Toolbox actualizes a system for making and performing 
profound neural systems with calculations, prepared models, and applications. A 
client can apply convolution neural systems and long momentary memory (LSTM) 
systems to give grouping and relapse on the picture, time-arrangement, and content 
information. Applications and plots bolster clients to picture actuation, alter organize 
structures, and screen arrangement progress 

Interoperability 

MATLAB underpins interoperability with other open-source profound learning 
systems, for example, ONNX. Clients can pick MATLAB for finding abilities and 
prebuilt purposes and applications which are not accessible in other programming 
dialects. 

The final verdict 

Well, we have discussed here the advantages of each language separately. You 
now have to weigh their advantages to see which one would you want to work 
with for your machine learning endeavors. Every language has got something 
different to offer. It depends on your expertise too to decide the answer for MatLab 
vs Python for machine learning. 

 
 

  
 

 

NATURE 

MATLAB is closed-source software and a proprietary commercial product. 
Thus, you need to purchase it to be able to use it. For every additional MATLAB 
toolbox you wish to install and run, you need to incur extra charges. The cost 
aspect aside, it is essential to note that since MATLAB is specially designed for 
MathWorks, its user base is quite limited. Also, if MathWorks were to ever go 
out of business, MATLAB would lose its industrial importance. 

Unlike MATLAB, Python is an open-source programming language, meaning 
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it is entirely free. You can download and install Python and make alterations to 
the source code to best suit your needs. Due to this reason, Python enjoys a bigger 
fan following and user base. Naturally, the Python community is pretty extensive, 
with hundreds and thousands of developers contributing actively to enrich the 
language continually. As we stated earlier, Python offers numerous free packages, 
making it an appealing choice for developers worldwide. 

Syntax 

The most notable technical difference between MATLAB and Python lies in 
their syntax. While MATLAB treats everything as an array, Python treats everything 
as a general object. 

For instance, in MATLAB, strings can either be arrays of strings or arrays 
of characters, but in Python, strings are denoted by a unique object called ―str.‖ 
Another example highlighting the difference between MATLAB and Python‘s 
syntax is that in MATLAB, a comment is anything that starts after the percent 
sign (%). In contrast, comments in Python typically follow the hash symbol (#). 

IDE 

MATLAB boasts of having an integrating development environment. It is a 
neat interface with a console located in the center where you can type commands, 
while a variable explorer lies on the right, you‘ll find a directory listing on the 
left. 

On the other hand, Python does not include a default development environment. 
Users need to choose an IDE that fits their requirement specifications. Anaconda, 
a popular Python package, encompasses two different IDEs – Spyder and JupyterLab 
– that function as efficiently as the MATLAB IDE. 

Tools 

Programming languages are usually accompanied by a suite of specialized 
tools to support a wide range of user requirements, from modeling scientific data 
to building ML models. Integrated tools make the development process easier, 
quicker, and more seamless. 

Although MATLAB does not have a host of libraries, its standard library 
includes integrated toolkits to cover complex scientific and computational 
challenges. The best thing about MATLAB toolkits is that experts develop them, 
rigorously tested, and well-documented for scientific and engineering operations. 
The toolkits are designed to collaborate efficiently and also integrate seamlessly 
with parallel computing environments and GPUs. Moreover, since they are updated 
together, you get fully-compatible versions of the tools. 



11
6 

Deep Learning Using Python 
 

 

As for Python, all of its libraries contain many useful modules for different 
programming needs and frameworks. Some of the best Python libraries include 
NumPy, SciPy, PyTorch, OpenCV Python, Keras, TensorFlow, Matplotlib, Theano, 
Requests, and NLTK. Being an open-source programming language, Python offers 
the flexibility and freedom to developers to design Python-based software tools 
(like GUI toolkits) for extending the capabilities of the language. 

WHICH IS BETTER FOR DEEP LEARNING MATLAB OR 
PYTHON? 

Deep Learning techniques has changed the field of computer vision significantly 
during the last decade, providing state-of-the-art solutions such as, object detection 
and image classification and opened the door for challenges and new problems, 
like image-to-image translation and visual question answering (VQA). 

The success and popularization of Deep Learning in the field of computer 
vision and related areas are fostered, in great part, by the availability of rich tools, 
apps and frameworks in the Python and MATLAB ecosystems. 

MATLAB is a robust computing environment for mathematical or technical 
computing operations involving the arrays, matrices, and linear algebra while, 
Python is a high-level launguage, general-purpose programming language designed 
for ease of use by human beings accomplishing all sorts of tasks. 

MATLAB has scientific computing for a long while Python has evolved as 
an efficient programming language with the emergence of artificial intelligence, 
deep learning, and machine learning. Though which both are used to execute 
various data analysis and rendering tasks, there are some elementary differences. 

MATLAB VS PYTHON 

MATLAB was designed by Cleve Moler Matlab is also known as matrix 
laboratory as a multi-paradigm programming language developed by MathWorks. 
It helpful for matrix manipulation, Implementation of algorithms and interfacing 
the programs written in other programming languages. MATLAB Primarily used 
for numerical computing. 

Whereas, Python was created by Guido van Rossum in 1991 and it is a high- 
level general-purpose Programming language. Python supports multiple paradigms 
such as Procedural, Functional programming and Object-Oriented Programming. 

Python is the most widely used language in the modern machine learning 
research industry and academia. It is the number in which one language for natural 
language processing (NLP), computer vision (CV), and reinforcement learning and 
other available packages such as NLTK, OpenCV, OpenAI Gym, etc. 
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MATLAB VS PYTHON: THE KEY DIFFERENCES 

Nature 

MATLAB is a closed-source software and proprietary commercial product. 
Thus, you need to purchase the software to be able to use it. For every additional 
MATLAB toolbox you wish to install and run the software, you need to incur extra 
charges. 

Python is an open-source programming language, meaning that it is entirely 
free. You can download and install Python from internet and make alterations to 
the source code for best suit your needs. 

Syntax 

The most notable and technical difference between MATLAB and Python lies 
in their syntax. While MATLAB treats everything as an array While, Python treats 
everything as a general object. For instance MATLAB, strings can either be arrays 
of strings or arrays of characters, but in Python, the strings are denoted by a unique 
object called ―str.‖ 

IDE 

MATLAB having an integrating development environment. It have a neat 
interface with a console located at the center where you can type commands, while 
a variable explorer lies on the right, you‘ll find a directory listing on the left side. 
On the other hand, Python does not have a default development environment. 
Users need to choose an IDE, that fits their requirement and specifications. 
Anaconda, one of the popular Python package, encompasses two different IDEs 
– Spyder and JupyterLab – their function as efficiently as of the MATLAB IDE. 

Tools 

MATLAB does not have a host library, it‘s a standard library includes integrated 
toolkits to cover the complex scientific and computational challenges. The best 
thing about MATLAB toolkits is that the experts develops rigorously an wil be 
tested and well-documented for scientific and engineering operations. The toolkits 
are designed to collaborate integrate seamlessly with parallel computing 
environments and GPUs. In Python, all of its libraries contain many useful modules 
in different programming and frameworks. Some of the best Python libraries 
include SciPy, PyTorch, NumPy, OpenCV Python, Keras, TensorFlow, Matplotlib, 
Theano, Requests, and NLTK. Being an open-source programming language, 
Python offers a flexibile freedom to developers to design based software tools (like 
GUI toolkits) for extending the capabilities of the language. 
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Graphics 

MATLAB‘s capabile for signal processing and modeling in a graphical interface 
while, Python lacks a graphical interface that can perform these advanced functions. 
Overall, both MATLAB and Python have excellent tools. While one is designed 
for specific tasks (MATLAB) and another can perform a wide variety of generic 
operations. 

WHICH IS FASTER MATLAB VS PYTHON? 

The python results the fundamentally the same which indicates the statsmodels 
OLS functions are exceptionally advance. Matlab shows a huge speed and exhibits 
how local direct variables are based in the math code is favored for speed. Overall, 
Matlab is around multiple times faster than python. 

Is Python better than Matlab? 

Obviously, Matlab has its on points of interest as well: It has a strong measured 
functions. Simulink is an item in which there is nothing worth mentioning elective 
yet. It may be simpler for beginners and the bundle incorporates all you need, while 
in Python you have to introduce additional bundles and an IDE. 

Can Python Replace Matlab? 

Each of them are marginally more effective than the other, yet when all is said 
in done Python can be a replacement for MATLAB. Most of the applications in 
MATLAB toolbox can be found in Python libraries or viably duplicated. Python 
is more versatile than MATLAB as a general language and it‘s indications of better 
execution. 

 
 

 
 

Generic programming tasks are problems that are not specific to any application. 
For example, reading and saving data to a file, preprocessing CSV or text file, 
writing scripts or functions for basic problems like counting the number of 
occurrences of an event, plotting data, performing basic statistical tasks such as 
computing the mean, median, standard deviation, etc. 

MACHINE LEARNING 

This is the area where Python and R have a clear advantage over Matlab. They 
both have access to numerous libraries and packages for both classical (random 
forest, regression, SVM, etc.) and modern (deep learning and neural networks such 
as CNN, RNN, etc.) machine learning models. However, Python is the most widely 
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used language for modern machine learning research in industry and academia. 
It is the number one language for natural language processing (NLP), computer 
vision (CV), and reinforcement learning, thanks to many available packages such 
as NLTK, OpenCV, OpenAI Gym, etc. 

Python is also the number one language for most research or work involving 
neural networks and deep learning, thanks to many available libraries and platforms 
such as Tensorflow, Pytorch, Keras, etc. 

Probabilistic Graphical Modeling (PGM) 

Probabilistic graphical models are a class of models for inference and learning 
on graphs. They are divided into undirected graphical models or sometimes 
referred to as Markov random field and directed graphical models or Bayesian 
network. 

Python, R, and Matlab all have support for PGM. However, Python and R 
are outperforming Matlab in this area. Matlab, thanks to the BNT (Bayesian 
Network Toolbox) by Kevin Murphy, has support for the static and dynamic 
Bayesian network. The Matlab standard library (hmmtrain) supports the discrete 
hidden Markov model (HMM), a well-known class of dynamic Bayesian networks. 
Matlab also supports the conditional random field (CRF) thanks to crfChain (by 
Mark Schmidt and Kevin Swersky) and UGM by Mark Schmidt. 

Python has excellent support for PGM thanks to hmmlearn (Full support for 
discrete and continuous HMM), pomegranate, bnlearn (a wrapper around the 
bnlearn in R), pypmc, bayespy, pgmpy, etc. It also has better support for CRF 
through sklearn-crfsuite. 

R has excellent support for PGM. It has numerous stunning packages and 
libraries such as bnlearn, bnstruct, depmixS4, etc. The support for CRF is done 
through the CRF and crfsuite packages. 

Causal Inference 

R by far is the most widely used language in causal inference research (along 
with SAS and STATA; however, R is free while the other two are not). It has 
numerous libraries such as bnlearn, bnstruct for causal discovery (structure learning) 
to learn the DAG (directed acyclic graph) from data. It has libraries and functions 
for various techniques such as outcome regression, IPTW, g-estimation, etc. 

Python also, thanks to the dowhy package by Microsoft research, is capable 
of combining the Pearl causal network framework with the Rubin potential outcome 
model and provides an easy interface for causal inference modeling. 
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Time-Series Analysis 

R is also the strongest and by far the most widely used language for time series 
analysis and forecasting. Numerous books have been written about time series 
forecasting using R. There are many libraries to implement algorithms such as 
ARIMA, Holt-Winters, exponential smoothing. For example, the forecast package 
by Rob Hyndman is the most used package for time series forecasting. Python, 
thanks to neural networks, especially the LSTM, receives lots of attention in time 
series forecasting ¹. Furthermore, the Prophet package by Facebook written in both 
R and Python provides excellent and automated support for time series analysis 
and forecasting. 

Signal Processing and Digital Communication 

This is the area where Matlab is the strongest and is used often in research 
and industry. Matlab communications toolbox provides all functionalities needed 
to implement a complete communication system. It has functionalities to implement 
all well-known modulation schemes, channel and source coding, equalizer, and 
necessary decoding and detection algorithms in the receiver. The DSP system 
toolbox provides all functionalities to design IIR (Infinite Impulse Response), FIR 
(Finite Impulse Response), and adaptive filters. It has complete support for FFT 
(Fast Fourier Transform), IFFT, wavelet, etc. 

Python, although is not as capable as Matlab in this area but has support for 
digital communication algorithms through CommPy and Komm packages. 

Control and Dynamical System 

Matlab is still the most widely used language for implementing the control 
and dynamical system algorithms thanks to the control system toolbox. It has 
extensive supports for all well-known methods such as PID controller, state-space 
design, root locus, transfer function, pole-zero diagrams, Kalman Filter, and many 
more. However, the main strength of Matlab is coming from its excellent and 
versatile graphical editor Simulink. Simulink lets you simulate the real-world 
system using drag and drop blocks (It is similar to the LabView). The Simulink 
output can then be imported to Matlab for further analysis. Python has support 
for control and dynamical system through the control and dynamical systems 
library. 

Optimization and Numerical Analysis 

All three programming languages have excellent support for optimization 
problems such as linear programming (LP), convex optimization, nonlinear 
optimization with and without constraint. 
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The support for optimization and numerical analysis in Matlab is done through 
the optimization toolbox. This supports linear programming (LP), mixed-integer 
linear programming (MILP), quadratic programming (QP), second-order cone 
programming (SOCP), nonlinear programming (NLP), constrained linear least 
squares, nonlinear least squares, nonlinear equations, etc. CVX is another strong 
package in Matlab written by Stephen Boys and his Ph.D. student for convex 
optimization. Python supports optimization through various packages such as 
CVXOPT, pyOpt (Nonlinear optimization), PuLP(Linear Programming), and 
CVXPY (python version of CVX for convex optimization problems). R supports 
convex optimization through CVXR (Similar to CVX and CVXPY), optimx 
(quasi-Newton and conjugate gradient method), and ROI (linear, quadratic, and 
conic optimization problems). 

Web Development 

This is an area where Python outperforms R and Matlab by a large margin. 
Actually, neither R nor Matlab are used for any web development design. 

Python, thanks to Django and Flask, is a compelling language for backend 
development. Many existing websites, such as Google, Pinterest, and Instagram, 
use Python as part of their backend development. 

Django is a full-stack platform that gives you everything you need right off 
the box (Battery-included). It also has support for almost all well-known databases. 
On the other hand, Flask is a lightweight platform that is mainly used to design 
less complex websites. 
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Pros and Cons of Each Language 

This chapter will discuss the cons and pros of each programming language 
and summarize. 

Matlab 

Advantage: • Many wonderful libraries and the number one choice in signal 

processing, communication system, and control theory. • Simulink: One of the best toolboxes in MATLAB is used extensively 

in control and dynamical system applications. • Lots of available and robust packages for optimization, control, and 

numerical analysis. • Nice toolbox for graphical work (Lets you plot beautiful looking 

graphs) and inherent support for matrix and vector manipulation. • Easy to learn and has a user-friendly interface. 

Disadvantage: • Proprietary and not free or open-source, which makes it very hard 

for collaboration. • Lack of good packages and libraries for machine learning, AI, time 

series analysis, and causal inference. • Limited in terms of functionality: cannot be used for web 

development and app design. • Not object-oriented language. • Smaller user community compared to Python. 

PYTHON 

Advantage: • Many wonderful libraries in machine learning, AI, web development, 

and optimization. • Number one language for  deep learning and machine learning in 

general. • Open-source and free. • A large community of users across GitHub, Stackoverflow, and … • It can be used for other applications besides engineering, unlike 

MATLAB. For example, GUI (Graphical User Interface) development 

using Tkinter and PyQt. 
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 • Object-oriented language. • Easy to learn and user-friendly syntax. 

Disadvantage: • Lack of good packages for signal processing and communication 

(still behind for engineering applications). • Steeper learning curve than MATLAB since it is an object-oriented 

programming(OOP) language and is harder to master. • Requires more time and expertise to setup and install the working 

environment. 

R 

Advantage: • So many wonderful libraries in statistics and machine learning. • Open-source and free. • Number one language for time series analysis, causal inference, and 

PGM. • A large community of researchers, especially in academia. • Ability to create web applications, for example, through the Shiney 

app. 

Disadvantage: • Slower compared to Python and Matlab. • More limited scope in terms of applications compared to Python. 

(Cannot be used for game development or cannot be as a backend 

for web developments) • Not object-oriented language. • Lack of good packages for signal processing and communication 

(still behind for engineering applications). • Smaller user communities compared to Python. • Harder and not user-friendly compared to Python and Matlab. 

To summarize, Python is the most popular language for machine learning, AI, 
and web development while it provides excellent support for PGM and optimization. 
On the other hand, Matlab is a clear winner for engineering applications while 
it has lots of good libraries for numerical analysis and optimization. The biggest 
disadvantage of Matlab is that it is not free or open-source. R is a clear winner 
for time series analysis, causal inference, and PGM. It also has excellent support 
for machine learning and data science applications. 
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Gradient Descent in 

  Machine Learning  

 
Gradient Descent is known as one of the most commonly used optimization 

algorithms to train machine learning models by means of minimizing errors 
between actual and expected results. Further, gradient descent is also used to train 
Neural Networks. 

In mathematical terminology, Optimization algorithm refers to the task of 
minimizing/maximizing an objective function f(x) parameterized by x. Similarly, 
in machine learning, optimization is the task of minimizing the cost function 
parameterized by the model‘s parameters. The main objective of gradient descent 
is to minimize the convex function using iteration of parameter updates. Once 
these machine learning models are optimized, these models can be used as powerful 
tools for Artificial Intelligence and various computer science applications. 

In this chapter on Gradient Descent in Machine Learning, we will learn in 
detail about gradient descent, the role of cost functions specifically as a barometer 
within Machine Learning, types of gradient descents, learning rates, etc. 

 
 

  
 

When we have a single parameter (theta), we can plot the dependent variable 
cost on the y-axis and theta on the x-axis. If there are two parameters, we can 
go with a 3-D plot, with cost on one axis and the two parameters (thetas) along 
the other two axes. 
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Cost along z-axis and parameters(thetas) along x-axis and y-axis 

It can also be visualized by using Contours. This shows a 3-D plot in two 
dimensions with parameters along both axes and the response as a contour. The 
value of the response increases away from the center and has the same value along 
with the rings. The response is directly proportional to the distance of a point from 
the center (along a direction). 

Fig. Gradient descent using Contour Plot. 
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ALPHA – THE LEARNING RATE 

We have the direction we want to move in, now we must decide the size of 
the step we must take. 

*It must be chosen carefully to end up with local minima. 

• If the learning rate is too high, we might OVERSHOOT the minima and 
keep bouncing, without reaching the minima 

• If the learning rate is too small, the training might turn out to be too long 

 
1. a) Learning rate is optimal, model converges to the minimum 

2. b) Learning rate is too small, it takes more time but converges to the minimum 

3. c) Learning rate is higher than the optimal value, it overshoots but converges 
( 1/C < ç <2/C) 

4. d) Learning rate is very large, it overshoots and diverges, moves away from 
the minima, performance decreases on learning 

Local Minima 
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The cost function may consist of many minimum points. The gradient may 
settle on any one of the minima, which depends on the initial point (i.e initial 
parameters(theta)) and the learning rate. Therefore, the optimization may converge 
to different points with different starting points and learning rate. 

 
 

 
 

Gradient descent was initially discovered by ”Augustin-Louis Cauchy” in 
mid of 18th century. Gradient Descent is defined as one of the most commonly 

used iterative optimization algorithms of machine learning to train the machine 

learning and deep learning models. It helps in finding the local minimum of 

a function. 

The best way to define the local minimum or local maximum of a function 
using gradient descent is as follows: 

o If we move towards a negative gradient or away from the gradient of 
the function at the current point, it will give the local minimum of 
that function. 

o Whenever we move towards a positive gradient or towards the gradient 
of the function at the current point, we will get the local maximum of 
that function. 

 

This entire procedure is known as Gradient Ascent, which is also known as 
steepest descent. The main objective of using a gradient descent algorithm is to 

minimize the cost function using iteration. To achieve this goal, it performs two 
steps iteratively: 

o Calculates the first-order derivative of the function to compute the 
gradient or slope of that function. 
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o Move away from the direction of the gradient, which means slope 
increased from the current point by alpha times, where Alpha is defined 
as Learning Rate. It is a tuning parameter in the optimization process 
which helps to decide the length of the steps. 

What is Cost-function? 

The cost function is defined as the measurement of difference or error 

between actual values and expected values at the current position and present 

in the form of a single real number. It helps to increase and improve machine 
learning efficiency by providing feedback to this model so that it can minimize 
error and find the local or global minimum. 

Further, it continuously iterates along the direction of the negative gradient 
until the cost function approaches zero. At this steepest descent point, the model 
will stop learning further. Although cost function and loss function are considered 
synonymous, also there is a minor difference between them. 

The slight difference between the loss function and the cost function is 
about the error within the training of machine learning models, as loss function 
refers to the error of one training example, while a cost function calculates 
the average error across an entire training set. 

How does Gradient Descent work? 

Before starting the working principle of gradient descent, we should know 
some basic concepts to find out the slope of a line from linear regression. The 
equation for simple linear regression is given as: 

1. Y=mX+c 

Where ‗m‘ represents the slope of the line, and ‗c‘ represents the intercepts 
on the y-axis. 

The starting point is used to evaluate the performance as it is considered just 
as an arbitrary point. At this starting point, we will derive the first derivative or 
slope and then use a tangent line to calculate the steepness of this slope. Further, 
this slope will inform the updates to the parameters (weights and bias). 

The slope becomes steeper at the starting point or arbitrary point, but whenever 
new parameters are generated, then steepness gradually reduces, and at the lowest 
point, it approaches the lowest point, which is called a point of convergence. 

The main objective of gradient descent is to minimize the cost function or 
the error between expected and actual. To minimize the cost function, two data 
points are required: 
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Direction & Learning Rate 

These two factors are used to determine the partial derivative calculation of 
future iteration and allow it to the point of convergence or local minimum or global 
minimum. 

LEARNING RATE 
 

It is defined as the step size taken to reach the minimum or lowest point. This 
is typically a small value that is evaluated and updated based on the behavior of 
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the cost function. If the learning rate is high, it results in larger steps but also leads 
to risks of overshooting the minimum. At the same time, a low learning rate shows 
the small step sizes, which compromises overall efficiency but gives the advantage 
of more precision. 

TYPES OF GRADIENT DESCENT 

Based on the error in various training models, the Gradient Descent learning 
algorithm can be divided into Batch gradient descent, stochastic gradient descent, 

and mini-batch gradient descent. Let‘s understand these different types of gradient 
descent: 

Batch Gradient Descent: 

Batch gradient descent (BGD) is used to find the error for each point in the 
training set and update the model after evaluating all training examples. This 
procedure is known as the training epoch. In simple words, it is a greedy approach 
where we have to sum over all examples for each update. 

Advantages of Batch gradient descent: 

o It produces less noise in comparison to other gradient descent. 

o It produces stable gradient descent convergence. 

o It is Computationally efficient as all resources are used for all training 
samples. 

Stochastic gradient descent 

Stochastic gradient descent (SGD) is a type of gradient descent that runs one 
training example per iteration. Or in other words, it processes a training epoch 
for each example within a dataset and updates each training example‘s parameters 
one at a time. As it requires only one training example at a time, hence it is easier 
to store in allocated memory. However, it shows some computational efficiency 
losses in comparison to batch gradient systems as it shows frequent updates that 
require more detail and speed. Further, due to frequent updates, it is also treated 
as a noisy gradient. However, sometimes it can be helpful in finding the global 
minimum and also escaping the local minimum. 

Advantages of Stochastic gradient descent: 

In Stochastic gradient descent (SGD), learning happens on every example, and 
it consists of a few advantages over other gradient descent. 

o It is easier to allocate in desired memory. 

o It is relatively fast to compute than batch gradient descent. 

o It is more efficient for large datasets. 
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MiniBatch Gradient Descent: 

Mini Batch gradient descent is the combination of both batch gradient descent 
and stochastic gradient descent. It divides the training datasets into small batch 
sizes then performs the updates on those batches separately. Splitting training 
datasets into smaller batches make a balance to maintain the computational efficiency 
of batch gradient descent and speed of stochastic gradient descent. Hence, we can 
achieve a special type of gradient descent with higher computational efficiency 
and less noisy gradient descent. 

Advantages of Mini Batch gradient descent: 

o It is easier to fit in allocated memory. 

o It is computationally efficient. 

o It produces stable gradient descent convergence. 

CHALLENGES WITH THE GRADIENT DESCENT 

Although we know Gradient Descent is one of the most popular methods for 
optimization problems, it still also has some challenges. There are a few challenges 
as follows: 

Local Minima and Saddle Point: 

For convex problems, gradient descent can find the global minimum easily, 
while for non-convex problems, it is sometimes difficult to find the global minimum, 
where the machine learning models achieve the best results. 
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Whenever the slope of the cost function is at zero or just close to zero, this 
model stops learning further. Apart from the global minimum, there occur some 
scenarios that can show this slop, which is saddle point and local minimum. Local 
minima generate the shape similar to the global minimum, where the slope of the 
cost function increases on both sides of the current points. 

In contrast, with saddle points, the negative gradient only occurs on one side 
of the point, which reaches a local maximum on one side and a local minimum 
on the other side. The name of a saddle point is taken by that of a horse‘s saddle. 

The name of local minima is because the value of the loss function is 
minimum at that point in a local region. In contrast, the name of the global 
minima is given so because the value of the loss function is minimum there, 
globally across the entire domain the loss function. 

Vanishing and Exploding Gradient 

In a deep neural network, if the model is trained with gradient descent and 
backpropagation, there can occur two more issues other than local minima and 
saddle point. 

Vanishing Gradients: 

Vanishing Gradient occurs when the gradient is smaller than expected. During 
backpropagation, this gradient becomes smaller that causing the decrease in the 
learning rate of earlier layers than the later layer of the network. Once this happens, 
the weight parameters update until they become insignificant. 

Exploding Gradient: 

Exploding gradient is just opposite to the vanishing gradient as it occurs when 
the Gradient is too large and creates a stable model. Further, in this scenario, model 
weight increases, and they will be represented as NaN. This problem can be solved 
using the dimensionality reduction technique, which helps to minimize complexity 
within the model. 

 
 

 
 

Gradient descent is an optimization algorithm used to find the values of 
parameters (coefficients) of a function (f) that minimizes a cost function (cost). 

Gradient descent is best used when the parameters cannot be calculated 
analytically (e.g. using linear algebra) and must be searched for by an optimization 
algorithm. 
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Intuition for Gradient Descent 

Think of a large bowl like what you would eat cereal out of or store fruit in. 
This bowl is a plot of the cost function (f). 

A random position on the surface of the bowl is the cost of the current values 
of the coefficients (cost). 

The bottom of the bowl is the cost of the best set of coefficients, the minimum 
of the function. The goal is to continue to try different values for the coefficients, 
evaluate their cost and select new coefficients that have a slightly better (lower) 
cost. 

Repeating this process enough times will lead to the bottom of the bowl and 
you will know the values of the coefficients that result in the minimum cost. 

GET YOUR FREE ALGORITHMS MIND MAP 

Sample of the handy machine learning algorithms mind map. 

I‘ve created a handy mind map of 60+ algorithms organized by type. 

GRADIENT DESCENT PROCEDURE 

The procedure starts off with initial values for the coefficient or coefficients 
for the function. These could be 0.0 or a small random value. 

coefficient = 0.0 

The cost of the coefficients is evaluated by plugging them into the function 
and calculating the cost. 

cost = f(coefficient) 
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or 

cost = evaluate(f(coefficient)) 

The derivative of the cost is calculated. The derivative is a concept from 
calculus and refers to the slope of the function at a given point. We need to know 
the slope so that we know the direction (sign) to move the coefficient values in 
order to get a lower cost on the next iteration. 

delta = derivative(cost) 

Now that we know from the derivative which direction is downhill, we can 
now update the coefficient values. A learning rate parameter (alpha) must be 
specified that controls how much the coefficients can change on each update. 

coefficient = coefficient – (alpha * delta) 

This process is repeated until the cost of the coefficients (cost) is 0.0 or close 
enough to zero to be good enough. 

You can see how simple gradient descent is. It does require you to know the 
gradient of your cost function or the function you are optimizing, but besides that, 
it‘s very straightforward. 

BATCH GRADIENT DESCENT FOR MACHINE LEARNING 

The goal of all supervised machine learning algorithms is to best estimate a 
target function (f) that maps input data (X) onto output variables (Y). This 
describes all classification and regression problems. 

Some machine learning algorithms have coefficients that characterize the 
algorithms estimate for the target function (f). Different algorithms have different 
representations and different coefficients, but many of them require a process of 
optimization to find the set of coefficients that result in the best estimate of the 
target function. 

Common examples of algorithms with coefficients that can be optimized using 
gradient descent are Linear Regression and Logistic Regression. 

The evaluation of how close a fit a machine learning model estimates the target 
function can be calculated a number of different ways, often specific to the 
machine learning algorithm. The cost function involves evaluating the coefficients 
in the machine learning model by calculating a prediction for the model for each 
training instance in the dataset and comparing the predictions to the actual output 
values and calculating a sum or average error (such as the Sum of Squared 
Residuals or SSR in the case of linear regression). 

From the cost function a derivative can be calculated for each coefficient so 
that it can be updated using exactly the update equation described above. 
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The cost is calculated for a machine learning algorithm over the entire training 
dataset for each iteration of the gradient descent algorithm. One iteration of the 
algorithm is called one batch and this form of gradient descent is referred to as 
batch gradient descent. 

Batch gradient descent is the most common form of gradient descent described 
in machine learning. 

STOCHASTIC GRADIENT DESCENT FOR MACHINE 
LEARNING 

Gradient descent can be slow to run on very large datasets. 

Because one iteration of the gradient descent algorithm requires a prediction 
for each instance in the training dataset, it can take a long time when you have 
many millions of instances. 

In situations when you have large amounts of data, you can use a variation 
of gradient descent called stochastic gradient descent. 

In this variation, the gradient descent procedure described above is run but 
the update to the coefficients is performed for each training instance, rather than 
at the end of the batch of instances. 

The first step of the procedure requires that the order of the training dataset 
is randomized. This is to mix up the order that updates are made to the coefficients. 
Because the coefficients are updated after every training instance, the updates will 
be noisy jumping all over the place, and so will the corresponding cost function. 
By mixing up the order for the updates to the coefficients, it harnesses this random 
walk and avoids it getting distracted or stuck. 

The update procedure for the coefficients is the same as that above, except 
the cost is not summed over all training patterns, but instead calculated for one 
training pattern. 

The learning can be much faster with stochastic gradient descent for very large 
training datasets and often you only need a small number of passes through the 
dataset to reach a good or good enough set of coefficients, e.g. 1-to-10 passes 
through the dataset. 

Tips for Gradient Descent 

This chapter lists some tips and tricks for getting the most out of the gradient 
descent algorithm for machine learning. 

• Plot Cost versus Time: Collect and plot the cost values calculated by the 
algorithm each iteration. The expectation for a well performing gradient 
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descent run is a decrease in cost each iteration. If it does not decrease, 
try reducing your learning rate. 

• Learning Rate: The learning rate value is a small real value such as 0.1, 
0.001 or 0.0001. Try different values for your problem and see which 
works best. 

• Rescale Inputs: The algorithm will reach the minimum cost faster if the 
shape of the cost function is not skewed and distorted. You can achieved 
this by rescaling all of the input variables (X) to the same range, such as 
[0, 1] or [-1, 1]. 

• Few Passes: Stochastic gradient descent often does not need more than 1-
to-10 passes through the training dataset to converge on good or good 
enough coefficients. 

• Plot Mean Cost: The updates for each training dataset instance can result 
in a noisy plot of cost over time when using stochastic gradient descent. 
Taking the average over 10, 100, or 1000 updates can give you a better 
idea of the learning trend for the algorithm. 

 
 

   
 

Gradient Descent is an optimization algorithm used for minimizing the cost 
function in various machine learning algorithms. It is basically used for updating 
the parameters of the learning model. 

Types of gradient Descent: 

1. Batch Gradient Descent: This is a type of gradient descent which 
processes all the training examples for each iteration of gradient descent. 
But if the number of training examples is large, then batch gradient 
descent is computationally very expensive. Hence if the number of 
training examples is large, then batch gradient descent is not preferred. 
Instead, we prefer to use stochastic gradient descent or mini-batch gradient 
descent. 

2. Stochastic Gradient Descent: This is a type of gradient descent which 
processes 1 training example per iteration. Hence, the parameters are being 
updated even after one iteration in which only a single example has been 
processed. Hence this is quite faster than batch gradient descent. But again, 
when the number of training examples is large, even then it processes only 
one example which can be additional overhead for the system as the 
number of iterations will be quite large. 
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3. Mini Batch gradient descent: This is a type of gradient descent which 
works faster than both batch gradient descent and stochastic gradient 
descent. Here b examples where b<m are processed per iteration. So even 
if the number of training examples is large, it is processed in batches of 
b training examples in one go. Thus, it works for larger training examples 
and that too with lesser number of iterations. 

Variables used: 

Let m be the number of training examples. 

Let n be the number of features. 

Note: if b == m, then mini batch gradient descent will behave similarly to 
batch gradient descent. 

Algorithm for batch gradient descent : 

Let h (x) be the hypothesis for linear regression. Then, the cost function is 
given by: 

Let represents the sum of all training examples from i=1 to m. 

Jtrain( ) = (1/2m) ( h (x(i)) - y(i))2 

Repeat { 

j = j - q (learning rate/m) * ( h (x(i)) - y(i))x (i) 
For every j =0 …n 

} 

Where xj
(i) Represents the jth feature of the ith training example. So if m is 

very large(e.g. 5 million training samples), then it takes hours or even days to 
converge to the global minimum. 

That‘s why for large datasets, it is not recommended to use batch gradient 
descent as it slows down the learning. 

Algorithm for stochastic gradient descent: 

1) Randomly shuffle the data set so that the parameters can be trained evenly 
for each type of data. 

2) As mentioned above, it takes into consideration one example per iteration. 

Hence, 

Let (x(i),y(i)) be the training example 

Cost( , (x(i),y(i))) = (1/2) Ó( h (x(i)) - y(i))2 Jtrain( ) 

= (1/m) Ó Cost( , (x(i),y(i))) 
Repeat { 
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For i=1 to m{ 

j = j - q (learning rate) * ( h (x(i)) - y(i))xj
(i) For 

every j =0 …n 

} 

} 

ALGORITHM FOR MINI BATCH GRADIENT DESCENT 

Say b be the no of examples in one batch, where b < m. 

Assume b = 10, m = 100; 

Note: However we can adjust the batch size. It is generally kept as power 
of 2. The reason behind it is because some hardware such as GPUs achieve better 
run time with common batch sizes such as power of 2. 

Repeat { 

For i=1,11, 21,…..,91 

Let Ó be the summation from i to i+9 represented by k. 

j = j - p øß¢ (learning rate/size of (b) ) * ( h   (x(k))   - y(k))xj
(k) For 

every j =0 …n 

} 

Convergence trends in different variants of Gradient Descents 

In case of Batch Gradient Descent, the algorithm follows a straight path 
towards the minimum. If the cost function is convex, then it converges to a global 
minimum and if the cost function is not convex, then it converges to a local 
minimum. Here the learning rate is typically held constant. In case of stochastic 
gradient Descent and mini-batch gradient descent, the algorithm does not converge 
but keeps on fluctuating around the global minimum. Therefore in order to make 
it converge, we have to slowly change the learning rate. However the convergence 
of Stochastic gradient descent is much noisier as in one iteration, it processes only 
one training example. 

 
 

  
 

  
 

Gradient descent is by far the most popular optimization strategy used in 
machine learning and deep learning at the moment. It is used when training data 
models, can be combined with every algorithm and is easy to understand and 
implement. Everyone working with machine learning should understand its concept. 
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We‘ll walk through how gradient descent works, what types of it are used today, 
and its advantages and tradeoffs. 

INTRODUCTION TO GRADIENT DESCENT 

Gradient descent is an optimization algorithm that‘s used when training a 
machine learning model. It‘s based on a convex function and tweaks its parameters 
iteratively to minimize a given function to its local minimum. 

Gradient Descent is an optimization algorithm for finding a local minimum 
of a differentiable function. Gradient descent is simply used in machine learning 
to find the values of a function‘s parameters (coefficients) that minimize a cost 
function as far as possible. 

You start by defining the initial parameter‘s values and from there gradient 
descent uses calculus to iteratively adjust the values so they minimize the given 
cost-function. To understand this concept fully, it‘s important to know about 
gradients. 

What is a Gradient? 

“A gradient measures how much the output of a function changes if you 

change the inputs a little bit.” —Lex Fridman (MIT) 

A gradient simply measures the change in all weights with regard to the change 
in error. You can also think of a gradient as the slope of a function. The higher 
the gradient, the steeper the slope and the faster a model can learn. But if the slope 
is zero, the model stops learning. In mathematical terms, a gradient is a partial 
derivative with respect to its inputs. 
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In machine learning, a gradient is a derivative of a function that has more than 
one input variable. Known as the slope of a function in mathematical terms, the 
gradient simply measures the change in all weights with regard to the change in 
error. 

Imagine a blindfolded man who wants to climb to the top of a hill with the 
fewest steps along the way as possible. He might start climbing the hill by taking 
really big steps in the steepest direction, which he can do as long as he is not 
close to the top. As he comes closer to the top, however, his steps will get smaller 
and smaller to avoid overshooting it. This process can be described mathematically 
using the gradient. 

 

 
Imagine the image below illustrates our hill from a top-down view and the 

red arrows are the steps of our climber. Think of a gradient in this context as a 
vector that contains the direction of the steepest step the blindfolded man can take 
and also how long that step should be. 

Note that the gradient ranging from X0 to X1 is much longer than the one 
reaching from X3 to X4. 

This is because the steepness/slope of the hill, which determines the length 
of the vector, is less. This perfectly represents the example of the hill because the 
hill is getting less steep the higher it‘s climbed. Therefore a reduced gradient goes 
along with a reduced slope and a reduced step size for the hill climber. 
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How Gradient Descent works 

Instead of climbing up a hill, think of gradient descent as hiking down to the 
bottom of a valley. This is a better analogy because it is a minimization algorithm 
that minimizes a given function. 

The equation below describes what gradient descent does: b is the next 
position of our climber, while a represents his current position. The minus sign 
refers to the minimization part of gradient descent. The gamma in the middle is 
a waiting factor and the gradient term ( Äf(a) ) is simply the direction of the 
steepest descent. 

 

 
So this formula basically tells us the next position we need to go, which is 

the direction of the steepest descent. Let‘s look at another example to really drive 
the concept home. 

Imagine you have a machine learning problem and want to train your algorithm 
with gradient descent to minimize your cost-function J(w, b) and reach its local 
minimum by tweaking its parameters (w and b). The image below shows the 
horizontal axes representing the parameters (w and b), while the cost function J(w, 
b) is represented on the vertical axes. Gradient descent is a convex function. 

 
We know we want to find the values of w and b that correspond to the 

minimum of the cost function (marked with the red arrow). To start finding the 
right values we initialize w and b with some random numbers. Gradient descent 
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then starts at that point (somewhere around the top of our illustration), and it takes 
one step after another in the steepest downside direction (i.e., from the top to the 
bottom of the illustration) until it reaches the point where the cost function is as 
small as possible. 

IMPORTANCE OF THE LEARNING RATE 

How big the steps the gradient descent takes into the direction of the local 
minimum are determined by the learning rate, which figures out how fast or slow 
we will move towards the optimal weights. 

For gradient descent to reach the local minimum we must set the learning rate 
to an appropriate value, which is neither too low nor too high. 

This is important because if the steps it takes are too big, it may not reach 
the local minimum because it bounces back and forth between the convex function 
of gradient descent. If we set the learning rate to a very small value, gradient 
descent will eventually reach the local minimum but that may take a while. 

So, the learning rate should never be too high or too low for this reason. You 
can check if your learning rate is doing well by plotting it on a graph. 

 

 
How to make sure it works properly 

A good way to make sure gradient descent runs properly is by plotting the 
cost function as the optimization runs. Put the number of iterations on the x-axis 
and the value of the cost-function on the y-axis. This helps you see the value of 
your cost function after each iteration of gradient descent, and provides a way to 
easily spot how appropriate your learning rate is. You can just try different values 
for it and plot them all together. The left image below shows such a plot, while 
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the image on the right illustrates the difference between good and bad learning 
rates. 

If gradient descent is working properly, the cost function should decrease after 
every iteration. 

When gradient descent can‘t decrease the cost-function anymore and remains 
more or less on the same level, it has converged. The number of iterations gradient 
descent needs to converge can sometimes vary a lot. It can take 50 iterations, 
60,000 or maybe even 3 million, making the number of iterations to convergence 
hard to estimate in advance. 

There are some algorithms that can automatically tell you if gradient descent 
has converged, but you must define a threshold for the convergence beforehand, 
which is also pretty hard to estimate. For this reason, simple plots are the preferred 
convergence test. 

Another advantage of monitoring gradient descent via plots is it allows us to 
easily spot if it doesn‘t work properly, for example if the cost function is increasing. 
Most of the time the reason for an increasing cost-function when using gradient 
descent is a learning rate that‘s too high. 

If the plot shows the learning curve just going up and down, without really 
reaching a lower point, try decreasing the learning rate. Also, when starting out 
with gradient descent on a given problem, simply try 0.001, 0.003, 0.01, 0.03, 0.1, 
0.3, 1, etc., as the learning rates and look at which one performs the best. 

This introductory video to gradient descent helps to explain one of machine 
learning‘s most useful algorithms. 

TYPES OF GRADIENT DESCENT 

There are three popular types of gradient descent that mainly differ in the 
amount of data they use: 
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Batch Gradient Descent 

Batch gradient descent, also called vanilla gradient descent, calculates the 
error for each example within the training dataset, but only after all training 
examples have been evaluated does the model get updated. This whole process 
is like a cycle and it‘s called a training epoch. 

Some advantages of batch gradient descent are its computational efficiency, 
it produces a stable error gradient and a stable convergence. Some disadvantages 
are that the stable error gradient can sometimes result in a state of convergence 
that isn‘t the best the model can achieve. It also requires the entire training dataset 
be in memory and available to the algorithm. 

Stochastic Gradient Descent 

By contrast, stochastic gradient descent (SGD) does this for each training 
example within the dataset, meaning it updates the parameters for each training 
example one by one. Depending on the problem, this can make SGD faster than 
batch gradient descent. One advantage is the frequent updates allow us to have 
a pretty detailed rate of improvement. 

The frequent updates, however, are more computationally expensive than the 
batch gradient descent approach. Additionally, the frequency of those updates can 
result in noisy gradients, which may cause the error rate to jump around instead 
of slowly decreasing. 

Mini-batch Gradient Descent 

Mini-batch gradient descent is the go-to method since it‘s a combination of 
the concepts of SGD and batch gradient descent. It simply splits the training 
dataset into small batches and performs an update for each of those batches. This 
creates a balance between the robustness of stochastic gradient descent and the 
efficiency of batch gradient descent. 

Common mini-batch sizes range between 50 and 256, but like any other 
machine learning technique, there is no clear rule because it varies for different 
applications. This is the go-to algorithm when training a neural network and it 
is the most common type of gradient descent within deep learning. 

 
 

 
 

Machine learning is a buzzword for today‘s technology, and it is growing very 
rapidly day by day. We are using machine learning in our daily life even without 
knowing it such as Google Maps, Google assistant, Alexa, etc. Below are some 
most trending real-world applications of Machine Learning: 
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IMAGE RECOGNITION 

Image recognition is one of the most common applications of machine learning. 
It is used to identify objects, persons, places, digital images, etc. The popular use 
case of image recognition and face detection is, Automatic friend tagging 

suggestion: 

Facebook provides us a feature of auto friend tagging suggestion. Whenever 
we upload a photo with our Facebook friends, then we automatically get a tagging 
suggestion with name, and the technology behind this is machine learning‘s face 

detection and recognition algorithm. 

Speech Recognition 

While using Google, we get an option of ―Search by voice,‖ it comes under 
speech recognition, and it‘s a popular application of machine learning. 

Speech recognition is a process of converting voice instructions into text, and 
it is also known as ―Speech to text‖, or ―Computer speech recognition.‖ At 
present, machine learning algorithms are widely used by various applications of 
speech recognition. Google assistant, Siri, Cortana, and Alexa are using speech 
recognition technology to follow the voice instructions. 
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Traffic prediction: 

If we want to visit a new place, we take help of Google Maps, which shows 
us the correct path with the shortest route and predicts the traffic conditions. 

It predicts the traffic conditions such as whether traffic is cleared, slow- 
moving, or heavily congested with the help of two ways: 

o Real Time location of the vehicle form Google Map app and sensors 

o Average time has taken on past days at the same time. 

Everyone who is using Google Map is helping this app to make it better. It 
takes information from the user and sends back to its database to improve the 
performance. 

Product recommendations: 

Machine learning is widely used by various e-commerce and entertainment 
companies such as Amazon, Netflix, etc., for product recommendation to the user. 
Whenever we search for some product on Amazon, then we started getting an 
advertisement for the same product while internet surfing on the same browser 
and this is because of machine learning. 

Google understands the user interest using various machine learning algorithms 
and suggests the product as per customer interest. 

As similar, when we use Netflix, we find some recommendations for 
entertainment series, movies, etc., and this is also done with the help of machine 
learning. 

Self-driving cars: 

One of the most exciting applications of machine learning is self-driving cars. 
Machine learning plays a significant role in self-driving cars. Tesla, the most 
popular car manufacturing company is working on self-driving car. It is using 
unsupervised learning method to train the car models to detect people and objects 
while driving. 

Email Spam and Malware Filtering: 

Whenever we receive a new email, it is filtered automatically as important, 
normal, and spam. We always receive an important mail in our inbox with the 
important symbol and spam emails in our spam box, and the technology behind 
this is Machine learning. Below are some spam filters used by Gmail: 

o Content Filter 

o Header filter 
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o General blacklists filter 

o Rules-based filters 

o Permission filters 

Some machine learning algorithms such as Multi-Layer Perceptron, Decision 

tree, and Naïve Bayes classifier are used for email spam filtering and malware 
detection. 

Virtual Personal Assistant: 

We have various virtual personal assistants such  as Google 

assistant, Alexa, Cortana, Siri. As the name suggests, they help us in finding the 
information using our voice instruction. These assistants can help us in various 
ways just by our voice instructions such as Play music, call someone, Open an 
email, Scheduling an appointment, etc. 

These virtual assistants use machine learning algorithms as an important part. 

These assistant record our voice instructions, send it over the server on a cloud, 
and decode it using ML algorithms and act accordingly. 

Online Fraud Detection: 

Machine learning is making our online transaction safe and secure by detecting 
fraud transaction. Whenever we perform some online transaction, there may be 
various ways that a fraudulent transaction can take place such as fake accounts, fake 

ids, and steal money in the middle of a transaction. So to detect this, Feed 

Forward Neural network helps us by checking whether it is a genuine transaction 
or a fraud transaction. 

For each genuine transaction, the output is converted into some hash values, 
and these values become the input for the next round. For each genuine transaction, 
there is a specific pattern which gets change for the fraud transaction hence, it 
detects it and makes our online transactions more secure. 

Stock Market trading: 

Machine learning is widely used in stock market trading. In the stock market, 
there is always a risk of up and downs in shares, so for this machine learning‘s long 

short term memory neural network is used for the prediction of stock market 
trends. 

Medical Diagnosis: 

In medical science, machine learning is used for diseases diagnoses. With this, 
medical technology is growing very fast and able to build 3D models that can 
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predict the exact position of lesions in the brain. It helps in finding brain tumors 
and other brain-related diseases easily. 

Automatic Language Translation: 

Nowadays, if we visit a new place and we are not aware of the language then 
it is not a problem at all, as for this also machine learning helps us by converting 
the text into our known languages. Google‘s GNMT (Google Neural Machine 
Translation) provide this feature, which is a Neural Machine Learning that translates 
the text into our familiar language, and it called as automatic translation. 

 
 

 

 

 
 

 

Imagine how much more valuable your data would be to your business if your 
document-intake solution could extract data from images as seamlessly as it does 
from the text. 

Thanks to deep learning, intelligent document processing (IDP) is able to 
combine various AI technologies to not only automatically classify photos, but 
also describe the various elements in pictures and write short sentences describing 
each segment with proper English grammar. 

IDP leverages a deep learning network known as CNN (Convolutional 
Neural Networks) to learn patterns that naturally occur in photos. IDP is then 
able to adapt as new data is processed, using Imagenet, one of the biggest 
databases of labeled images, which has been instrumental in advancing computer 
vision. 

One of the ways this type of technology is implemented with impact is in the 
document-heavy insurance industry. Claims processing starts with a small army 
of humans manually entering data from forms. 

In a typical use case, the claim includes a set of documents such as: claim 
forms, police reports, accident scene and vehicle damage pictures, vehicle operator 
driver‘s license, insurance copy, bills, invoices, and receipts. 

Documents like these aren‘t standard, and the business systems that automate 
most of the claims processing can‘t function without data from the forms. 

To turn those documents into data, the Convolutional Neural Networks are 
trained using GPU-accelerated deep learning frameworks such as Caffe2, Chainer, 
Microsoft Cognitive Toolkit, MXNet, PaddlePaddle, Pytorch, TensorFlow, and 
inference optimizers such as TensorRT. 

Neural networks were first used in 2009 for speech recognition, and were 
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only implemented by Google in 2012. Deep learning, also called neural networks, 
is a subset of machine learning that uses a model of computing that‘s very much 
inspired by the structure of the brain. 

―Deep learning is already working in Google search and in image search; 
it allows you to image-search a term like ‗hug.‘ It‘s used to getting you Smart 
Replies to your Gmail. It‘s in speech and vision. It will soon be used in machine 
translation, I believe.‖ said Geoffrey Hinton, considered the Godfather of neural 
networks. 

Deep Learning models, with their multi-level structures, as shown above, 
are very helpful in extracting complicated information from input images. 
Convolutional neural networks are also able to drastically reduce computation 
time by taking advantage of GPU for computation, which many networks fail 
to utilize. 

Let‘s take a deeper dive into IDP‘s image data preparation using deep learning. 
Preparing images for further analysis is needed to offer better local and global 
feature detection, which is how IDP enables straight-through processing and drives 
ROI for your business. Below are the steps: 

IMAGE CLASSIFICATION 

For increased accuracy, image classification using CNN is most effective. First 
and foremost, your IDP solution will need a set of images. In this case, images 
of beauty and pharmacy products are used as the initial training data set. The most 
common image data input parameters are the number of images, image dimensions, 
number of channels, and number of levels per pixel. 

With classification, you are able to categorize images (in this case, as beauty 
and pharmacy). Each category again has different classes of objects as shown in 
the picture below: 
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Data Labeling 

It‘s better to manually label the input data so that the deep learning algorithm 
can eventually learn to make the predictions on its own. Some off the shelf manual 
data labeling tools are given here. 

The objective at this point will be mainly to identify the actual object or text 
in a particular image, demarcating whether the word or object is oriented improperly, 
and identifying whether the script (if present) is in English or other languages. 

To automate the tagging and annotation of images, NLP pipelines can be 
applied. ReLU (rectified linear unit) is then used for the non-linear activation 
functions, as they perform better and decrease training time. 

To increase the training dataset, we can also try data augmentation by emulating 
the existing images and transforming them. We could transform the available 
images by making them smaller, blowing them up, cropping elements etc. 

Using RCNN 

With the usage of Region-based Convolutional Neural Network (aka RCNN), 
locations of objects in an image can be detected with ease. Within just 3 years 
the RCNN has moved from Fast RCNN, Faster RCNN to Mask RCNN, making 
tremendous progress towards human-level cognition of images. Below is an example 
of the final output of the image recognition model where it was trained by deep 
learning CNN to identify categories and products in images. 

If you are new to deep learning methods and don‘t want to train your own 
model, you could have a look on Google Cloud Vision. It works pretty well for 
general cases. 
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Category Detection 

 

Product Detection 

If you are looking for a specific IDP solution or customization, our ML experts 
will ensure your time and resources are well spent in partnering with us. 
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Natural Language 

  Processing  

 
Natural language processing (NLP) is a subfield of linguistics, computer 

science, and artificial intelligence concerned with the interactions between computers 
and human language, in particular how to program computers to process and 
analyze large amounts of natural language data. The goal is a computer capable 
of ―understanding‖ the contents of documents, including the contextual nuances 
of the language within them. The technology can then accurately extract information 
and insights contained in the documents as well as categorize and organize the 
documents themselves. 

Challenges in natural language processing frequently involve speech recognition, 
natural-language understanding, and natural-language generation. 

HISTORY 

The proposed test includes a task that involves the automated interpretation 
and generation of natural language. 

Symbolic NLP (1950s – early 1990s) 

The premise of symbolic NLP is well-summarized by John Searle‘s Chinese 
room experiment: Given a collection of rules (e.g., a Chinese phrasebook, with 
questions and matching answers), the computer emulates natural language 
understanding (or other NLP tasks) by applying those rules to the data it confronts. • 1950s: The Georgetown experiment in 1954 involved fully automatic 

translation of more than sixty Russian sentences into English. The 
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authors claimed that within three or five years, machine translation 

would be a solved problem. However, real progress was much 

slower, and after the ALPAC report in 1966, which found that ten- 

year-long research had failed to fulfill the expectations, funding for 

machine translation was dramatically reduced. Little further research 

in machine translation was conducted until the late 1980s when the 

first statistical machine translation systems were developed. • 1960s: Some notably successful natural language processing systems 

developed in the 1960s were SHRDLU, a natural language system 

working in restricted “blocks worlds” with restricted vocabularies, 
and ELIZA, a simulation of a Rogerian psychotherapist, written by 

Joseph Weizenbaum between 1964 and 1966. Using almost no 

information about human thought or emotion, ELIZA sometimes 

provided a startlingly human-like interaction. When the “patient” 

exceeded the very small knowledge base, ELIZA might provide a generic response, for example, responding to “My head hurts” with “Why do you say your head hurts?”. • 1970s: During the 1970s, many programmers began to write “conceptual ontologies”, which structured real-world information 

into computer-understandable data. Examples are MARGIE (Schank, 

1975), SAM (Cullingford, 1978), PAM (Wilensky, 1978), TaleSpin 

(Meehan, 1976), QUALM (Lehnert, 1977), Politics (Carbonell, 1979), 

and Plot Units (Lehnert 1981). During this time, the first chatterbots 

were written (e.g., PARRY). • 1980s: The 1980s and early 1990s mark the heyday of symbolic 

methods in NLP. Focus areas of the time included research on rule- 

based parsing (e.g., the development of HPSG as a computational 

operationalization of generative grammar), morphology (e.g., two- 

level morphology), semantics (e.g., Lesk algorithm), reference (e.g., 

within Centering Theory) and other areas of natural language 

understanding (e.g., in the Rhetorical Structure Theory). Other lines 

of research were continued, e.g., the development of chatterbots 

with Racter and Jabberwacky. An important development (that 

eventually led to the statistical turn in the 1990s) was the rising 

importance of quantitative evaluation in this period. 

Statistical NLP (1990s–2010s) 

Up to the 1980s, most natural language processing systems were based on 
complex sets of hand-written rules. Starting in the late 1980s, however, there was 
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a revolution in natural language processing with the introduction of machine 
learning algorithms for language processing. This was due to both the steady 
increase in computational power and the gradual lessening of the dominance of 
Chomskyan theories of linguistics (e.g. transformational grammar), whose 
theoretical underpinnings discouraged the sort of corpus linguistics that underlies 
the machine-learning approach to language processing. • 1990s: Many of the notable early successes on statistical methods 

in NLP occurred in the field of machine translation, due especially 

to work at IBM Research. These systems were able to take advantage 

of existing multilingual textual corpora that had been produced by 

the Parliament of Canada and the European Union as a result of 

laws calling for the translation of all governmental proceedings into 

all official languages of the corresponding systems of government. 

However, most other systems depended on corpora specifically 

developed for the tasks implemented by these systems, which was 

(and often continues to be) a major limitation in the success of these 

systems. As a result, a great deal of research has gone into methods 

of more effectively learning from limited amounts of data. • 2000s: With the growth of the web, increasing amounts of raw 

(unannotated) language data has become available since the mid- 

1990s. Research has thus increasingly focused on unsupervised and 

semi-supervised learning algorithms. Such algorithms can learn 

from data that has not been hand-annotated with the desired answers 

or using a combination of annotated and non-annotated data. 

Generally, this task is much more difficult than supervised learning, 

and typically produces less accurate results for a given amount of 

input data. However, there is an enormous amount of non-annotated 

data available (including, among other things, the entire content of 

the World Wide Web), which can often make up for the inferior 

results if the algorithm used has a low enough time complexity to 

be practical. 

Neural NLP (present) 

In the 2010s, representation learning and deep neural network-style machine 
learning methods became widespread in natural language processing. That popularity 
was due partly to a flurry of results showing that such techniques can achieve state- 
of-the-art results in many natural language tasks, e.g., in language modeling and 
parsing. This is increasingly important in medicine and healthcare, where NLP 
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helps analyze notes and text in electronic health records that would otherwise be 
inaccessible for study when seeking to improve care. 

 
 

 
 

 

Figure . A human neuron collects inputs from other neurons using dendrites and 

sums all the inputs. If the total is greater than a threshold value, it produces an 

output. 

The average human brain has approximately 100 billion neurons. A human 
neuron uses dendrites to collect inputs from other neurons, adds all the inputs, 
and if the resulting sum is greater than a threshold, it fires and produces an output. 
The fired output is then sent to other connected neurons. 

Figure . A perceptron is a mathematical model of a neuron. It receives weighted 

inputs, which are added together and passed to an activation function. The 

activation function decides whether it should produce an output. 

A perceptron is a mathematical model of a biological neuron. Just like a real 
neuron, it receives inputs and computes an output. Each input has an associated 
weight. All the inputs are individually multiplied by their weights, added together, 
and passed into an activation function that determines whether the neuron should 
fire and produce an output. 
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There are many different types of activation functions with different properties, 
but one of the simplest is the step function. A step function outputs a 1 if the input 
is higher than a certain threshold, otherwise it outputs a 0. For example, if a 
perceptron has two inputs (x1 and x2): 

x1 = 0.9 

x2 = 0.7 

which have weightings (w1 and w2) of: 

w1 = 0.2 

w2 = 0.9 

and the activation function threshold is equal to 0.75, then weighing the inputs 
and adding them together yields: 

x1w1 + x2w2 = (0.9×0.7) + (0.2×0.9) = 0.81 

Because the total input is higher than the threshold (0.75), the neuron will 
fire. Since we chose a simple step function, the output would be 1. 

So how does all this lead to intelligence? It starts with the ability to learn 
something simple through training. 

Training a perceptron 
 
 

 

Figure . To train a perceptron, the weights are adjusted to minimize the output 

error. Output error is defined as the difference between the desired output and the 

actual output. 

Training a perceptron involves feeding it multiple training samples and 
calculating the output for each of them. After each sample, the weights are adjusted 
to minimize the output error, usually defined as the difference between the desired 
(target) and the actual outputs. 

By following this simple training algorithm to update weights, a perceptron 
can learn to perform binary linear classification. For example, it can learn to 
separate dogs from cats given size and domestication data, if the data are linearly 
classifiable. 
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The perceptron‘s ability to learn classification is significant because 
classification underlies many acts of intelligence. A common example of 
classification is detecting spam emails. 

Given a training dataset of spam-like emails labeled as ―spam‖ and regular 
emails labeled as ―not-spam,‖ an algorithm that can learn characteristics of spam 
emails would be very useful. 

Similarly, such algorithms could learn to classify tumors as cancerous or 
benign, learn your music preferences and classify songs as ―likely-to-like‖ and 
―unlikely-to-like,‖ or learn to distinguish normally behaving valves from abnormally 
behaving valves. 

Perceptrons are powerful classifiers. However, individually they can only 
learn linearly classifiable patterns and are unable to handle nonlinear or more 
complicated patterns. 

Figure . A perceptron can learn to separate dogs and cats given size and 

domestication data. As more training examples are added, the perceptron updates 

its linear boundary. 

Multilayer perceptrons 

A single neuron is capable of learning simple patterns, but when many neurons 
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are connected together, their abilities increase dramatically. Each of the 100 billion 
neurons in the human brain has, on average, 7,000 connections to other neurons. 

It has been estimated that the brain of a three-year-old child has about one 
quadrillion connections between neurons. And, theoretically, there are more possible 
neural connections in the brain than there are atoms in the universe. 

A multilayer perceptron (MLP) is an artificial neural network with multiple 
layers of neurons between input and output. MLPs are also called feedforward 
neural networks. Feedforward means that data flow in one direction from the input 
to the output layer. 

Figure . A multilayer perceptron has multiple layers of neurons between the input 

and output. Each neuron’s output is connected to every neuron in the next layer. 

Typically, every neuron‘s output is connected to every neuron in the next layer. 
Layers that come between the input and output layers are referred to as hidden 
layers. 

Figure . Although single perceptrons can learn to classify linear patterns, they are 

unable to handle nonlinear or other more complicated datasets. Multilayer 

perceptrons are more capable of handling nonlinear patterns, and can even classify 

inseparable data. 



Natural Language Processing 159 
 

 

 

MLPs are widely used for pattern classification, recognition, prediction, and 
approximation, and can learn complicated patterns that are not separable using 
linear or other easily articulated curves. The capacity of an MLP network to learn 
complicated patterns increases with the number of neurons and layers. 

MLPs have been successful at a wide range of AI tasks, from speech recognition 
to predicting thermal conductivity of aqueous electrolyte solutions and controlling 
a continuous stirred-tank reactor. For example, an MLP for recognizing printed 
digits (e.g., the account and routing number printed on a check) would be comprised 
of a grid of inputs to read individual pixels of digits (say, a 9×12 bitmap), followed 
by one or more hidden layers, and finally 10 output neurons to indicate which 
number was recognized in the input (0–9). 

Figure . A multilayer perceptron for recognizing digits printed on a check would 

have a grid of inputs to read individual pixels of digits, followed by one or more 

layers of hidden neurons, and 10 output neurons to indicate which number was 

recognized. 

Such an MLP for recognizing digits would typically be trained by showing 
it images of digits and telling it whether it recognized them correctly or not. 
Initially, the MLP‘s output would be random, but as it is trained, it will adjust 
weights between the neurons and start classifying inputs correctly. 

A typical real-life MLP for recognizing handwritten digits consists of 784 
perceptrons that accept inputs from a 28×28 pixel bitmap representing a handwritten 
digit, 15 neurons in the hidden layer, and 10 output neurons. Typically, such an 
MLP is trained using a pool of 50,000 labeled images of handwritten digits. It 
can learn to recognize previously unseen handwritten digits with 95% accuracy 
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after a few minutes of training on a well-configured computer.In a similar fashion, 
others have used data from Perry’s Chemical Engineers’ Handbook to train an 
MLP to predict viscosity of a compound. In another study, scientists were able 
to detect faults in a heat exchanger by training an MLP to recognize deviations 
in temperature and flowrate as symptoms of tube plugging and partial fouling in 
the heat exchanger internals. 

Figure . An MLP can learn the dynamics of the plant by evaluating the error 

between the actual plant output and the neural network output. 

 
 

Figure . A continuous stirred-tank reactor can be trained to maintain appropriate 

product concentration and flow by using past data about inflow, concentration, 

liquid level, and outflow. 

As another example, MLPs have been used for predictive control of chemical 
reactors. The typical setup trains a neural network to learn the forward dynamics 
of the plant. The prediction error between the plant output and the neural network 
output is used for training the neural network. The neural network learns from 
previous inputs and outputs to predict future values of the plant output. For 
example, a controller for a catalytic continuous stirred-tank reactor can be trained 
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to maintain appropriate product concentration and flow by using past data about 
inflow Q1 and Q2 at concentrations Cb1 and Cb2, respectively, liquid level h, and 
outflow Q0 at concentration Cb. 

In general, given a statistically relevant dataset, an artificial neural network 
can learn from it. 

TRAINING A MULTILAYER PERCEPTRON 

Training a single perceptron is easy — all weights are adjusted repeatedly until 
the output matches the expected value for all training data. For a single perceptron, 
weights can be adjusted using the formulas: 

where wi is the weight, wi is the weight adjustment, t is the target output, 

o is the actual output, and is the learning rate—usually a small value used to 
moderate the rate of change of weights. 

However, this approach of tweaking each weight independently does not work 
for an MLP because each neuron‘s output is an input for all neurons in the next 
layer. 

Tweaking the weight on one connection impacts not only the neuron it propagates 
to directly, but also all of the neurons in the following layers as well, and thus 
affects all the outputs. Therefore, you cannot obtain the best set of weights by 
optimizing one weight at a time. Instead, the entire space of possible weight 
combinations must be searched simultaneously. The primary method for doing this 
relies on a technique called gradient descent. 

Imagine you are at the top of a hill and you need to get to the bottom of the 
hill in the quickest way possible. One approach could be to look in every direction 
to see which way has the steepest grade, and then step in that direction. 

If you repeat this process, you will gradually go farther and farther downhill. 
That is how gradient descent works: If you can define a function over all weights 
that reflects the difference between the desired output and calculated output, then 
the function will be lowest (i.e., the bottom of the hill) when the MLP‘s output 
matches the desired output. Moving toward this lowest value will become a matter 
of calculating the gradient (or derivative of the function) and taking a small step 
in the direction of the gradient. 

Backpropagation, short for ―backward propagation of errors,‖ is the most 
commonly used algorithm for training MLPs using gradient descent. The backward 
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part of the name stems from the fact that calculation of the gradient proceeds 
backward through the network. The gradient of the final layer of weights is 
calculated first and the gradient of the first layer of weights is calculated last. 

Figure . Sigmoid and tanh functions are nonlinear activation functions. The output 

of the sigmoid function is a value between 0 and 1. The output of the sigmoid 

function can be used to represent a probability, often the probability that the input 

belongs to a category (e.g., cat or dog). 

Before looking at how backpropagation works, recall that a perceptron calculates 
a weighted sum of its input and then decides whether it should fire. The decision 
about whether or not to fire is made by the activation function. In the perceptron 
example, we used a step function that outputted a 1 if the input was higher than 
a certain threshold, otherwise it out-putted a 0. In practice, ANNs use nonlinear 
activation functions like the sigmoid or tanh functions, at least in part because 
a simple step function does not lend itself to calculating gradients — its derivative 
is 0. 

The sigmoid function maps its input to the range 0 to 1. You might recall that 
probabilities, too, are represented by values between 0 and 1. Hence, the output 
of the sigmoid function can be used to represent a probability — often the 
probability that the input belongs to a category (e.g., cat or dog). For this reason, 
it is one of the most widely used activation functions for artificial neural networks. 

Example: Training an MLP with backpropagation 

Consider a simple MLP with three layers: two neurons in the input layer ( Xi1, 
Xi2) connected to three neurons (Xh1, Xh2, Xh3) in the hidden layer via weights W1– 
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W6, which are connected to a single output neuron (Xo) via weights W7–W9. Assume 
that we are using the sigmoid activation function, initial weights are randomly 
assigned, and input values [1, 1] will lead to an output of 0.77. 

Figure . An example MLP with three layers accepts an input of [1, 1] and computes 

an output of 0.77. 

Let‘s assume that the desired output for inputs [1, 1] is 0. The backpropagation 
algorithm can be used to adjust weights. First, calculate the error at the last 
neuron‘s (Xo) output: 

Recall that the output (0.77) was obtained by applying the sigmoid activation 
function to the weighted sum of the previous layer‘s outputs (1.2): 

 

(1.2) = 1/(1 + e–1.2) = 0.77 
The derivative of the sigmoid function represents the gradient or rate of 

change: 
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Hence, the gradient or rate of change of the sigmoid function at x = 1.2 is: 
(0.77) × (1 – 0.77) = 0.177 

If we multiply the error in output (–0.77) by this rate of change (0.177) we 
get –0.13. This can be proposed as a small change in input that could move the 
system toward the proverbial ―bottom of the hill.‖ 

Recall that the sum of the weighted inputs of the output neuron (1.2) is the 
product of the output of the three neurons in the previous layer and the weights 
between them and the output neuron: 

To change this sum (So) by –0.13, we can adjust each incoming weight (W7, 
W8, W9) proportional to the corresponding output of the previous (hidden layer) 
neuron (Xh1, Xh2, Xh3). So, the weights between the hidden neurons and the output 
neuron become: 

W7new = W7old + (–0.13/Xh1) = 0.3 + (–0.13/0.73) = 0.11 

W8new = W8old + (–0.13/Xh2) = 0.5 + (–0.13/0.79) = 0.33 

W9new = W9old + (–0.13/Xh3) = 0.9 + (–0.13/0.67) = 0.7 

After adjusting the weights between the hidden layer neurons and the output 
neuron, we repeat the process and similarly adjust the weights between the input 
and hidden layer neurons. 

This is done by first calculating the gradient at the input coming into each 
neuron in the hidden layer. For example, the gradient at Xh3 is: 0.67×(1–0.67) = 
0.22. 

The proposed change in the sum of weighted inputs of Xh3 (i.e., S3) can be 
calculated by multiplying the gradient (0.22) by the proposed change in the sum 
of weighted inputs of the following neuron (–0.13), and dividing by the weight 
from this neuron to the following neuron (W9). 

Note that we are propagating errors backward, so it was the error in the 
following neuron (Xo) that we proportionally propagated backward to this neuron‘s 
inputs. 

The proposed change in the sum of weighted inputs of Xh3 (i.e., S3) is: 

Change in S3 = Gradient at Xh3 × Proposed change in So/W9 

Change in S3 = 0.22 × (–0.13)/0.9 = –0.03 

Note that we use the original value of W9 (0.9) rather than the recently 
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calculated new value (0.7) to propagate the error backward. This is because 
although we are working one step at a time, we are trying to search the entire 
space of possible weight combinations and change them in the right direction 
(toward the bottom of the hill). In each iteration, we propagate the output error 
through original weights, leading to new weights for the iteration. This global 
backward propagation of the output neuron‘s error is the key concept that lets all 
weights change toward ideal values. 

Figure . A backpropagation algorithm is used to adjust the weightings between the 

hidden layer neurons and the output neurons, so that the output is closer to the 

target value (0). 

Once you know the proposed change in the weighted sum of inputs of each 
neuron (S1, S2, S3), you can change the weights leading to the neuron ( W1 through 
W6) proportional to the output from the previous neuron. Thus, W6 changes from 
0.3 to 0.27. 

Upon repeating this process for all weights, the new output in this example 
becomes 0.68, which is a little closer to the ideal value (0) than what we started 
with (0.77). By performing just one such iteration of forward and back propagation, 
the network is already learning! 

A small neural network like the one in this example will typically learn to 
produce correct outputs after a few hundred such iterations of weight adjustments. 
On the other hand, training AlphaGo‘s neural network, which has tens of thousands 
of neurons arranged in more than a dozen layers, takes more serious computing 
power, which is becoming increasingly available. 
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Looking forward 

Even with all the amazing progress in AI, such as self-driving cars, the 
technology is still very narrow in its accomplishments and far from autonomous. 
Today, 99% of machine learning requires human work and large amounts of data 
that need to be normalized and labeled (i.e., this is a dog; this is a cat). And, people 
need to supply and fine-tune the appropriate algorithms. All of this relies on 
manual labor. 

Other challenges that plague neural networks include: 

• Bias. Machine learning is looking for patterns in data. If you start 

with bad data, you will end up with bad models. 

• Over-fitting. In general, a model is typically trained by maximizing 

its performance on a particular training dataset. The model thus 

memorizes the training examples, but may not learn to generalize 

to new situations and datasets. 

• Hyper-parameter optimization. The value of a hyper-parameter is 

defined prior to the commencement of the learning process (e.g., 

number of layers, number of neurons per layer, type of activation 

function, initial value of weights, value of the learning rate, etc.). 

Changing the value of such parameters by a small amount can 

invoke large changes in the performance of the network. 

• Black-box problems. Neural networks are essentially black boxes, and 

researchers have a hard time understanding how they deduce 

particular conclusions. Their operation is largely invisible to humans, 

rendering them unsuitable for domains in which verifying the process 

is important. 

Thus far, we have looked at neural networks that learn from data. This 
approach is called supervised learning. The training of a neural network under 
supervised learning, an input is presented to the network and it produces an output 
that is compared with the desired/target output. An error is generated if there is 
a difference between the actual output and the target output and the weights are 
adjusted based on this error until the actual output matches the desired output. 
Supervised learning relies on manual human labor for collecting, preparing, and 
labeling a large amount of training data. 

Unsupervised learning does not depend on target outputs for learning. Instead, 
inputs of a similar type are combined to form clusters. When a new input pattern 
is applied, the neural network gives an output indicating the class to which the 
input pattern belongs. 
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Reinforcement learning involves learning by trial and error, solely from rewards 
or punishments. Such neural networks construct and learn their own knowledge 
directly from raw inputs, such as vision, without any hand-engineered features or 
domain heuristics. AlphaGo Zero, the successor to AlphaGo, is based on 
reinforcement learning. Unlike AlphaGo, which was initially trained on thousands 
of human games to learn how to play Go, AlphaGo Zero learned to play simply 
by playing games against itself. Although it began with completely random play, 
it eventually surpassed human level of play and defeated the previous version of 
AlphaGo by 100 games to 0. 

 
 

  
 

 

In the early days, many language-processing systems were designed by symbolic 
methods, i.e., the hand-coding of a set of rules, coupled with a dictionary lookup: 
such as by writing grammars or devising heuristic rules for stemming. 

More recent systems based on machine-learning algorithms have many 
advantages over hand-produced rules: • The learning procedures used during machine learning automatically 

focus on the most common cases, whereas when writing rules by 

hand it is often not at all obvious where the effort should be directed. • Automatic learning procedures can make use of statistical inference 

algorithms to produce models that are robust to unfamiliar input 

(e.g. containing words or structures that have not been seen before) 

and to erroneous input (e.g. with misspelled words or words 

accidentally omitted). Generally, handling such input gracefully 

with handwritten rules, or, more generally, creating systems of 

handwritten rules that make soft decisions, is extremely difficult, 

error-prone and time-consuming. • Systems based on automatically learning the rules can be made 

more accurate simply by supplying more input data. However, 

systems based on handwritten rules can only be made more accurate 

by increasing the complexity of the rules, which is a much more 

difficult task. In particular, there is a limit to the complexity of 

systems based on handwritten rules, beyond which the systems 

become more and more unmanageable. However, creating more 

data to input to machine-learning systems simply requires a 

corresponding increase in the number of man-hours worked, 

generally without significant increases in the complexity of the 

annotation process. 
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Despite the popularity of machine learning in NLP research, symbolic methods 
are still (2020) commonly used: • when the amount of training data is insufficient to successfully 

apply machine learning methods, e.g., for the machine translation 

of low-resource languages such as provided by the Apertium system, • for preprocessing in NLP pipelines, e.g., tokenization, or • for postprocessing and transforming the output of NLP pipelines, 

e.g., for knowledge extraction from syntactic parses. 

Statistical methods 

Since the so-called ―statistical revolution‖ in the late 1980s and mid-1990s, 
much natural language processing research has relied heavily on machine learning. 
The machine-learning paradigm calls instead for using statistical inference to 
automatically learn such rules through the analysis of large corpora (the plural 
form of corpus, is a set of documents, possibly with human or computer annotations) 
of typical real-world examples. 

Many different classes of machine-learning algorithms have been applied to 
natural-language-processing tasks. These algorithms take as input a large set of 
―features‖ that are generated from the input data. Increasingly, however, research 
has focused on statistical models, which make soft, probabilistic decisions based 
on attaching real-valued weights to each input feature (complex-valued embeddings, 
and neural networks in general have also been proposed, for e.g. speech). Such 
models have the advantage that they can express the relative certainty of many 
different possible answers rather than only one, producing more reliable results 
when such a model is included as a component of a larger system. 

Some of the earliest-used machine learning algorithms, such as decision trees, 
produced systems of hard if-then rules similar to existing hand-written rules. 
However, part-of-speech tagging introduced the use of hidden Markov models to 
natural language processing, and increasingly, research has focused on statistical 
models, which make soft, probabilistic decisions based on attaching real-valued 
weights to the features making up the input data. The cache language models upon 
which many speech recognition systems now rely are examples of such statistical 
models. Such models are generally more robust when given unfamiliar input, 
especially input that contains errors (as is very common for real-world data), and 
produce more reliable results when integrated into a larger system comprising 
multiple subtasks. Since the neural turn, statistical methods in NLP research have 
been largely replaced by neural networks. However, they continue to be relevant 
for contexts in which statistical interpretability and transparency is required. 
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Neural networks 

A major drawback of statistical methods is that they require elaborate feature 
engineering. Since 2015, the field has thus largely abandoned statistical methods 
and shifted to neural networks for machine learning. Popular techniques include 
the use of word embeddings to capture semantic properties of words, and an 
increase in end-to-end learning of a higher-level task (e.g., question answering) 
instead of relying on a pipeline of separate intermediate tasks (e.g., part-of-speech 
tagging and dependency parsing). 

In some areas, this shift has entailed substantial changes in how NLP systems 
are designed, such that deep neural network-based approaches may be viewed as 
a new paradigm distinct from statistical natural language processing. For instance, 
the term neural machine translation (NMT) emphasizes the fact that deep learning- 
based approaches to machine translation directly learn sequence-to-sequence 
transformations, obviating the need for intermediate steps such as word alignment 
and language modeling that was used in statistical machine translation (SMT). 

COMMON NLP TASKS 

The following is a list of some of the most commonly researched tasks in 
natural language processing. Some of these tasks have direct real-world applications, 
while others more commonly serve as subtasks that are used to aid in solving larger 
tasks. 

Though natural language processing tasks are closely intertwined, they can 
be subdivided into categories for convenience. A coarse division is given below. 

TEXT AND SPEECH PROCESSING 

Optical character recognition (OCR) 

Given an image representing printed text, determine the corresponding text. 

Speech recognition 

Given a sound clip of a person or people speaking, determine the textual 
representation of the speech. This is the opposite of text to speech and is one of 
the extremely difficult problems colloquially termed ―AI-complete‖. In natural 
speech there are hardly any pauses between successive words, and thus speech 
segmentation is a necessary subtask of speech recognition. In most spoken languages, 
the sounds representing successive letters blend into each other in a process termed 
coarticulation, so the conversion of the analog signal to discrete characters can 
be a very difficult process. Also, given that words in the same language are spoken 
by people with different accents, the speech recognition software must be able 
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to recognize the wide variety of input as being identical to each other in terms 
of its textual equivalent. 

Speech segmentation 

Given a sound clip of a person or people speaking, separate it into words. A 
subtask of speech recognition and typically grouped with it. 

Text-to-speech 

Given a text, transform those units and produce a spoken representation. Text- 
to-speech can be used to aid the visually impaired. 

Word segmentation (Tokenization) 

Separate a chunk of continuous text into separate words. For a language like 
English, this is fairly trivial, since words are usually separated by spaces. However, 
some written languages like Chinese, Japanese and Thai do not mark word 
boundaries in such a fashion, and in those languages text segmentation is a 
significant task requiring knowledge of the vocabulary and morphology of words 
in the language. Sometimes this process is also used in cases like bag of words 
(BOW) creation in data mining. 

MORPHOLOGICAL ANALYSIS 

Lemmatization 

The task of removing inflectional endings only and to return the base dictionary 
form of a word which is also known as a lemma. Lemmatization is another 
technique for reducing words to their normalized form. But in this case, the 
transformation actually uses a dictionary to map words to their actual form. 

Morphological segmentation 

Separate words into individual morphemes and identify the class of the 
morphemes. The difficulty of this task depends greatly on the complexity of the 
morphology (i.e., the structure of words) of the language being considered. English 
has fairly simple morphology, especially inflectional morphology, and thus it is often 
possible to ignore this task entirely and simply model all possible forms of a word 
(e.g., ―open, opens, opened, opening‖) as separate words. In languages such as 
Turkish or Meitei, a highly agglutinated Indian language, however, such an approach 
is not possible, as each dictionary entry has thousands of possible word forms. 

Part-of-speech tagging 

Given a sentence, determine the part of speech (POS) for each word. Many 
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words, especially common ones, can serve as multiple parts of speech. For example, 
―book‖ can be a noun (―the book on the table‖) or verb (―to book a flight‖); ―set‖ 
can be a noun, verb or adjective; and ―out‖ can be any of at least five different 
parts of speech. 

Stemming 

The process of reducing inflected (or sometimes derived) words to a base form 
(e.g., ―close‖ will be the root for ―closed‖, ―closing‖, ―close‖, ―closer‖ etc.). 
Stemming yields similar results as lemmatization, but does so on grounds of rules, 
not a dictionary. 

SYNTACTIC ANALYSIS 

Grammar induction 

Generate a formal grammar that describes a language‘s syntax. 

Sentence breaking (also known as “sentence boundary 
disambiguation”) 

Given a chunk of text, find the sentence boundaries. Sentence boundaries are 
often marked by periods or other punctuation marks, but these same characters 
can serve other purposes (e.g., marking abbreviations). 

Parsing 

Determine the parse tree (grammatical analysis) of a given sentence. The 
grammar for natural languages is ambiguous and typical sentences have multiple 
possible analyses: perhaps surprisingly, for a typical sentence there may be thousands 
of potential parses (most of which will seem completely nonsensical to a human). 
There are two primary types of parsing: dependency parsing and constituency 

parsing. Dependency parsing focuses on the relationships between words in a 
sentence (marking things like primary objects and predicates), whereas constituency 
parsing focuses on building out the parse tree using a probabilistic context-free 
grammar (PCFG). 

LEXICAL SEMANTICS (OF INDIVIDUAL WORDS IN 
CONTEXT) 

Lexical semantics 

What is the computational meaning of individual words in context? 

Distributional semantics 

How can we learn semantic representations from data? 
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Named entity recognition (NER) 

Given a stream of text, determine which items in the text map to proper names, 
such as people or places, and what the type of each such name is (e.g. person, 
location, organization). Although capitalization can aid in recognizing named 
entities in languages such as English, this information cannot aid in determining 
the type of named entity, and in any case, is often inaccurate or insufficient. For 
example, the first letter of a sentence is also capitalized, and named entities often 
span several words, only some of which are capitalized. Furthermore, many other 
languages in non-Western scripts (e.g. Chinese or Arabic) do not have any 
capitalization at all, and even languages with capitalization may not consistently 
use it to distinguish names. For example, German capitalizes all nouns, regardless 
of whether they are names, and French and Spanish do not capitalize names that 
serve as adjectives. 

Sentiment analysis 

Extract subjective information usually from a set of documents, often using 
online reviews to determine ―polarity‖ about specific objects. It is especially useful 
for identifying trends of public opinion in social media, for marketing. 

Terminology extraction 

The goal of terminology extraction is to automatically extract relevant terms 
from a given corpus. 

Word-sense disambiguation (WSD) 

Many words have more than one meaning; we have to select the meaning 
which makes the most sense in context. For this problem, we are typically given 
a list of words and associated word senses, e.g. from a dictionary or an online 
resource such as WordNet. 

Entity linking 

Many words—typically proper names—refer to named entities; here we have 
to select the entity (a famous individual, a location, a company, etc.) which is 
referred to in context. 

RELATIONAL SEMANTICS (SEMANTICS OF INDIVIDUAL 
SENTENCES) 

Relationship extraction 

Given a chunk of text, identify the relationships among named entities (e.g. 
who is married to whom). 
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Semantic parsing 

Given a piece of text (typically a sentence), produce a formal representation 
of its semantics, either as a graph (e.g., in AMR parsing) or in accordance with 
a logical formalism (e.g., in DRT parsing). This challenge typically includes 
aspects of several more elementary NLP tasks from semantics (e.g., semantic role 
labelling, word-sense disambiguation) and can be extended to include full-fledged 
discourse analysis. 

Semantic role labelling 

Given a single sentence, identify and disambiguate semantic predicates (e.g., 
verbal frames), then identify and classify the frame elements (semantic roles). 

DISCOURSE (SEMANTICS BEYOND INDIVIDUAL 
SENTENCES) 

Coreference resolution 

Given a sentence or larger chunk of text, determine which words (―mentions‖) 
refer to the same objects (―entities‖). Anaphora resolution is a specific example 
of this task, and is specifically concerned with matching up pronouns with the 
nouns or names to which they refer. The more general task of coreference resolution 
also includes identifying so-called ―bridging relationships‖ involving referring 
expressions. For example, in a sentence such as ―He entered John‘s house through 
the front door‖, ―the front door‖ is a referring expression and the bridging relationship 
to be identified is the fact that the door being referred to is the front door of John‘s 
house (rather than of some other structure that might also be referred to). 

Discourse analysis 

This rubric includes several related tasks. One task is discourse parsing, i.e., 
identifying the discourse structure of a connected text, i.e. the nature of the 
discourse relationships between sentences (e.g. elaboration, explanation, contrast). 
Another possible task is recognizing and classifying the speech acts in a chunk 
of text (e.g. yes-no question, content question, statement, assertion, etc.). 

Implicit semantic role labelling 

Given a single sentence, identify and disambiguate semantic predicates (e.g., 
verbal frames) and their explicit semantic roles in the current sentence. Then, 
identify semantic roles that are not explicitly realized in the current sentence, 
classify them into arguments that are explicitly realized elsewhere in the text and 
those that are not specified, and resolve the former against the local text. A closely 
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related task is zero anaphora resolution, i.e., the extension of coreference resolution 
to pro-drop languages. 

Recognizing textual entailment 

Given two text fragments, determine if one being true entails the other, entails 
the other‘s negation, or allows the other to be either true or false. 

Topic segmentation and recognition 

Given a chunk of text, separate it into segments each of which is devoted to 
a topic, and identify the topic of the segment. 

Argument mining 

The goal of argument mining is the automatic extraction and identification 
of argumentative structures from natural language text with the aid of computer 
programs. Such argumentative structures include the premise, conclusions, the 
argument scheme and the relationship between the main and subsidiary argument, 
or the main and counter-argument within discourse. 

HIGHER-LEVEL NLP APPLICATIONS 

Automatic summarization (text summarization) 

Produce a readable summary of a chunk of text. Often used to provide 
summaries of the text of a known type, such as research papers, articles in the 
financial section of a newspaper. 

Book generation 

Not an NLP task proper but an extension of natural language generation and 
other NLP tasks is the creation of full-fledged books. The first machine-generated 
book was created by a rule-based system in 1984 (Racter, The policeman’s beard 

is half-constructed). The first published work by a neural network was published 
in 2018, 1 the Road, marketed as a novel, contains sixty million words. Both these 
systems are basically elaborate but non-sensical (semantics-free) language models. 
The first machine-generated science book was published in 2019 (Beta Writer, 
Lithium-Ion Batteries, Springer, Cham). Unlike Racter and 1 the Road, this is 
grounded on factual knowledge and based on text summarization. 

Dialogue management 

Computer systems intended to converse with a human. 

Document AI 

A Document AI platform sits on top of the NLP technology enabling users 
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with no prior experience of artificial intelligence, machine learning or NLP to 
quickly train a computer to extract the specific data they need from different 
document types. NLP-powered Document AI enables non-technical teams to quickly 
access information hidden in documents, for example, lawyers, business analysts 
and accountants. 

Grammatical error correction 

Grammatical error detection and correction involves a great band-width of 
problems on all levels of linguistic analysis (phonology/orthography, morphology, 
syntax, semantics, pragmatics). Grammatical error correction is impactful since 
it affects hundreds of millions of people that use or acquire English as a second 
language. It has thus been subject to a number of shared tasks since 2011. As far 
as orthography, morphology, syntax and certain aspects of semantics are concerned, 
and due to the development of powerful neural language models such as GPT- 
2, this can now (2019) be considered a largely solved problem and is being 
marketed in various commercial applications. 

Machine translation 

Automatically translate text from one human language to another. This is one 
of the most difficult problems, and is a member of a class of problems colloquially 
termed ―AI-complete‖, i.e. requiring all of the different types of knowledge that 
humans possess (grammar, semantics, facts about the real world, etc.) to solve 
properly. 

Natural-language generation (NLG): 

Convert information from computer databases or semantic intents into readable 
human language. 

Natural-language understanding (NLU) 

Convert chunks of text into more formal representations such as first-order 
logic structures that are easier for computer programs to manipulate. Natural 
language understanding involves the identification of the intended semantic from 
the multiple possible semantics which can be derived from a natural language 
expression which usually takes the form of organized notations of natural language 
concepts. Introduction and creation of language metamodel and ontology are 
efficient however empirical solutions. An explicit formalization of natural language 
semantics without confusions with implicit assumptions such as closed-world 
assumption (CWA) vs. open-world assumption, or subjective Yes/No vs. objective 
True/False is expected for the construction of a basis of semantics formalization. 
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Question answering 

Given a human-language question, determine its answer. Typical questions 
have a specific right answer (such as ―What is the capital of Canada?‖), but 
sometimes open-ended questions are also considered (such as ―What is the meaning 
of life?‖). 

Text-to-image generation 

Given a description of an image, generate an image that matches the description. 

Text-to-scene generation 

Given a description of a scene, generate a 3D model of the scene. 
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Artificial Deep Neural 

  Networks  

 
Artificial neural networks (ANNs) or connectionist systems are computing 

systems inspired by the biological neural networks that constitute animal brains. 
Such systems learn (progressively improve their ability) to do tasks by considering 
examples, generally without task-specific programming. For example, in image 
recognition, they might learn to identify images that contain cats by analyzing 
example images that have been manually labeled as ―cat‖ or ―no cat‖ and using 
the analytic results to identify cats in other images. They have found most use 
in applications difficult to express with a traditional computer algorithm using 
rule-based programming. 

An ANN is based on a collection of connected units called artificial neurons, 
(analogous to biological neurons in a biological brain). Each connection (synapse) 
between neurons can transmit a signal to another neuron. The receiving 
(postsynaptic) neuron can process the signal(s) and then signal downstream neurons 
connected to it. Neurons may have state, generally represented by real numbers, 
typically between 0 and 1. Neurons and synapses may also have a weight that 
varies as learning proceeds, which can increase or decrease the strength of the 
signal that it sends downstream. 

Typically, neurons are organized in layers. Different layers may perform 
different kinds of transformations on their inputs. Signals travel from the first 
(input), to the last (output) layer, possibly after traversing the layers multiple times. 

The original goal of the neural network approach was to solve problems in 
the same way that a human brain would. Over time, attention focused on matching 
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specific mental abilities, leading to deviations from biology such as backpropagation, 
or passing information in the reverse direction and adjusting the network to reflect 
that information. 

Neural networks have been used on a variety of tasks, including computer 
vision, speech recognition, machine translation, social network filtering, playing 
board and video games and medical diagnosis. 

As of 2017, neural networks typically have a few thousand to a few million 
units and millions of connections. Despite this number being several order of 
magnitude less than the number of neurons on a human brain, these networks can 
perform many tasks at a level beyond that of humans (e.g., recognizing faces, or 
playing ―Go‖ ). 

Deep neural networks 

A deep neural network (DNN) is an artificial neural network (ANN) with 
multiple layers between the input and output layers. There are different types of 
neural networks but they always consist of the same components: neurons, synapses, 
weights, biases, and functions. These components as a whole function similarly 
to a human brain, and can be trained like any other ML algorithm. 

For example, a DNN that is trained to recognize dog breeds will go over the 
given image and calculate the probability that the dog in the image is a certain 
breed. 

The user can review the results and select which probabilities the network 
should display (above a certain threshold, etc.) and return the proposed label. Each 
mathematical manipulation as such is considered a layer, and complex DNN have 
many layers, hence the name ―deep‖ networks. 

DNNs can model complex non-linear relationships. DNN architectures generate 
compositional models where the object is expressed as a layered composition of 
primitives. The extra layers enable composition of features from lower layers, 
potentially modeling complex data with fewer units than a similarly performing 
shallow network. For instance, it was proved that sparse multivariate polynomials 
are exponentially easier to approximate with DNNs than with shallow networks. 

Deep architectures include many variants of a few basic approaches. Each 
architecture has found success in specific domains. It is not always possible to 
compare the performance of multiple architectures, unless they have been evaluated 
on the same data sets. 

DNNs are typically feedforward networks in which data flows from the input 
layer to the output layer without looping back. At first, the DNN creates a map 
of virtual neurons and assigns random numerical values, or ―weights‖, to connections 
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between them. The weights and inputs are multiplied and return an output between 
0 and 1. If the network did not accurately recognize a particular pattern, an 
algorithm would adjust the weights. That way the algorithm can make certain 
parameters more influential, until it determines the correct mathematical 
manipulation to fully process the data. 

Recurrent neural networks (RNNs), in which data can flow in any direction, 
are used for applications such as language modeling. Long short-term memory is 
particularly effective for this use. Convolutional deep neural networks (CNNs) are 
used in computer vision. CNNs also have been applied to acoustic modeling for 
automatic speech recognition (ASR). 

Challenges 

As with ANNs, many issues can arise with naively trained DNNs. Two 
common issues are overfitting and computation time. 

DNNs are prone to overfitting because of the added layers of abstraction, 
which allow them to model rare dependencies in the training data. Regularization 
methods such as Ivakhnenko‘s unit pruning or weight decay or sparsity can be 
applied during training to combat overfitting. Alternatively dropout regularization 
randomly omits units from the hidden layers during training. This helps to exclude 
rare dependencies. Finally, data can be augmented via methods such as cropping 
and rotating such that smaller training sets can be increased in size to reduce the 
chances of overfitting. 

DNNs must consider many training parameters, such as the size (number of 
layers and number of units per layer), the learning rate, and initial weights. 
Sweeping through the parameter space for optimal parameters may not be feasible 
due to the cost in time and computational resources. 

Various tricks, such as batching (computing the gradient on several training 
examples at once rather than individual examples) speed up computation. Large 
processing capabilities of many-core architectures (such as GPUs or the Intel Xeon 
Phi) have produced significant speedups in training, because of the suitability of 
such processing architectures for the matrix and vector computations. 

Alternatively, engineers may look for other types of neural networks with more 
straightforward and convergent training algorithms. CMAC (cerebellar model 
articulation controller) is one such kind of neural network. It doesn‘t require 
learning rates or randomized initial weights for CMAC. The training process can 
be guaranteed to converge in one step with a new batch of data, and the computational 
complexity of the training algorithm is linear with respect to the number of neurons 
involved. 
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HARDWARE 

Since the 2010s, advances in both machine learning algorithms and computer 
hardware have led to more efficient methods for training deep neural networks 
that contain many layers of non-linear hidden units and a very large output layer. 
By 2019, graphic processing units (GPUs), often with AI-specific enhancements, 
had displaced CPUs as the dominant method of training large-scale commercial 
cloud AI. OpenAI estimated the hardware computation used in the largest deep 
learning projects from AlexNet (2012) to AlphaZero (2017), and found a 300,000- 
fold increase in the amount of computation required, with a doubling-time trendline 
of 3.4 months. Special electronic circuits called deep learning processors were 
designed to speed up deep learning algorithms. Deep learning processors include 
neural processing units (NPUs) in Huawei cellphones and cloud computing servers 
such as tensor processing units (TPU) in the Google Cloud Platform. Cerebras 
Systems has also built a dedicated system to handle large deep learning models, 
the CS-2, based on the largest processor in the industry, the second-generation 
Wafer Scale Engine (WSE-2). 

Atomically thin semiconductors are considered promising for energy-efficient 
deep learning hardware where the same basic device structure is used for both 
logic operations and data storage. In 2020, Marega et al. published experiments 
with a large-area active channel material for developing logic-in-memory devices 
and circuits based on floating-gate field-effect transistors (FGFETs). 

In 2021, J. Feldmann et al. proposed an integrated photonic hardware accelerator 
for parallel convolutional processing. The authors identify two key advantages of 
integrated photonics over its electronic counterparts: (1) massively parallel data 
transfer through wavelength division multiplexing in conjunction with frequency 
combs, and (2) extremely high data modulation speeds. Their system can execute 
trillions of multiply-accumulate operations per second, indicating the potential of 
integrated photonics in data-heavy AI applications. 

 
 

 
 

An artificial neural network is an interconnected group of nodes, inspired by 
a simplification of neurons in a brain. Here, each circular node represents an 
artificial neuron and an arrow represents a connection from the output of one 
artificial neuron to the input of another. 

Artificial neural networks (ANNs), usually simply called neural networks 

(NNs) or neural nets, are computing systems inspired by the biological neural 
networks that constitute animal brains. 
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An ANN is based on a collection of connected units or nodes called artificial 
neurons, which loosely model the neurons in a biological brain. Each connection, 
like the synapses in a biological brain, can transmit a signal to other neurons. An 
artificial neuron receives signals then processes them and can signal neurons 
connected to it. The ―signal‖ at a connection is a real number, and the output of 
each neuron is computed by some non-linear function of the sum of its inputs. 
The connections are called edges. Neurons and edges typically have a weight that 
adjusts as learning proceeds. The weight increases or decreases the strength of 
the signal at a connection. Neurons may have a threshold such that a signal is 
sent only if the aggregate signal crosses that threshold. 

Typically, neurons are aggregated into layers. Different layers may perform 
different transformations on their inputs. Signals travel from the first layer (the 
input layer), to the last layer (the output layer), possibly after traversing the layers 
multiple times. 

TRAINING 

Neural networks learn (or are trained) by processing examples, each of which 
contains a known ―input‖ and ―result,‖ forming probability-weighted associations 
between the two, which are stored within the data structure of the net itself. The 
training of a neural network from a given example is usually conducted by 
determining the difference between the processed output of the network (often a 
prediction) and a target output. This difference is the error. The network then 
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adjusts its weighted associations according to a learning rule and using this error 
value. Successive adjustments will cause the neural network to produce output 
which is increasingly similar to the target output. After a sufficient number of these 
adjustments the training can be terminated based upon certain criteria. This is 
known as supervised learning. 

Such systems ―learn‖ to perform tasks by considering examples, generally 
without being programmed with task-specific rules. For example, in image 
recognition, they might learn to identify images that contain cats by analyzing 
example images that have been manually labeled as ―cat‖ or ―no cat‖ and using 
the results to identify cats in other images. They do this without any prior 
knowledge of cats, for example, that they have fur, tails, whiskers, and cat-like 
faces. Instead, they automatically generate identifying characteristics from the 
examples that they process. 

History 

Warren McCulloch and Walter Pitts (1943) opened the subject by creating a 
computational model for neural networks. In the late 1940s, D. O. Hebb created 
a learning hypothesis based on the mechanism of neural plasticity that became 
known as Hebbian learning. Farley and Wesley A. Clark (1954) first used 
computational machines, then called ―calculators‖, to simulate a Hebbian network. 
In 1958, psychologist Frank Rosenblatt invented the perceptron, the first artificial 
neural network, funded by the United States Office of Naval Research. The first 
functional networks with many layers were published by Ivakhnenko and Lapa 
in 1965, as the Group Method of Data Handling. The basics of continuous 
backpropagation were derived in the context of control theory by Kelley in 1960 
and by Bryson in 1961, using principles of dynamic programming. Thereafter 
research stagnated following Minsky and Papert (1969), who discovered that basic 
perceptrons were incapable of processing the exclusive-or circuit and that computers 
lacked sufficient power to process useful neural networks. 

In 1970, Seppo Linnainmaa published the general method for automatic 
differentiation (AD) of discrete connected networks of nested differentiable 
functions. In 1973, Dreyfus used backpropagation to adapt parameters of controllers 
in proportion to error gradients. Werbos‘s (1975) backpropagation algorithm enabled 
practical training of multi-layer networks. In 1982, he applied Linnainmaa‘s AD 
method to neural networks in the way that became widely used. 

The development of metal–oxide–semiconductor (MOS) very-large-scale 
integration (VLSI), in the form of complementary MOS (CMOS) technology, 
enabled increasing MOS transistor counts in digital electronics. This provided 
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more processing power for the development of practical artificial neural networks 
in the 1980s. 

In 1986 Rumelhart, Hinton and Williams showed that backpropagation learned 
interesting internal representations of words as feature vectors when trained to 
predict the next word in a sequence. 

From 1988 onward, the use of neural networks transformed the field of protein 
structure prediction, in particular when the first cascading networks were trained 
on profiles (matrices) produced by multiple sequence alignments. 

In 1992, max-pooling was introduced to help with least-shift invariance and 
tolerance to deformation to aid 3D object recognition. Schmidhuber adopted a 
multi-level hierarchy of networks (1992) pre-trained one level at a time by 
unsupervised learning and fine-tuned by backpropagation. 

Neural networks‘ early successes included predicting the stock market and in 
1995 a (mostly) self-driving car. 

Geoffrey Hinton et al. (2006) proposed learning a high-level representation 
using successive layers of binary or real-valued latent variables with a restricted 
Boltzmann machine to model each layer. In 2012, Ng and Dean created a network 
that learned to recognize higher-level concepts, such as cats, only from watching 
unlabeled images. Unsupervised pre-training and increased computing power from 
GPUs and distributed computing allowed the use of larger networks, particularly 
in image and visual recognition problems, which became known as ―deep learning‖. 

Ciresan and colleagues (2010) showed that despite the vanishing gradient 
problem, GPUs make backpropagation feasible for many-layered feedforward 
neural networks. Between 2009 and 2012, ANNs began winning prizes in image 
recognition contests, approaching human level performance on various tasks, 
initially in pattern recognition and handwriting recognition. For example, the bi- 
directional and multi-dimensional long short-term memory (LSTM) of Graves et 
al. won three competitions in connected handwriting recognition in 2009 without 
any prior knowledge about the three languages to be learned. 

Ciresan and colleagues built the first pattern recognizers to achieve human- 
competitive/superhuman performance on benchmarks such as traffic sign recognition 
(IJCNN 2012). 

MODELS 

ANNs began as an attempt to exploit the architecture of the human brain to 
perform tasks that conventional algorithms had little success with. They soon 
reoriented towards improving empirical results, mostly abandoning attempts to 
remain true to their biological precursors. Neurons are connected to each other 
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in various patterns, to allow the output of some neurons to become the input of 
others. The network forms a directed, weighted graph. 

Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs 

at axon terminals 

An artificial neural network consists of a collection of simulated neurons. 
Each neuron is a node which is connected to other nodes via links that correspond 
to biological axon-synapse-dendrite connections. Each link has a weight, which 
determines the strength of one node‘s influence on another. 

Artificial neurons 

ANNs are composed of artificial neurons which are conceptually derived from 
biological neurons. Each artificial neuron has inputs and produces a single output 
which can be sent to multiple other neurons. The inputs can be the feature values 
of a sample of external data, such as images or documents, or they can be the 
outputs of other neurons. The outputs of the final output neurons of the neural 
net accomplish the task, such as recognizing an object in an image. 

To find the output of the neuron we take the weighted sum of all the inputs, 
weighted by the weights of the connections from the inputs to the neuron. We add 
a bias term to this sum. This weighted sum is sometimes called the activation. 
This weighted sum is then passed through a (usually nonlinear) activation function 
to produce the output. The initial inputs are external data, such as images and 
documents. The ultimate outputs accomplish the task, such as recognizing an 
object in an image. 

Organization 

The neurons are typically organized into multiple layers, especially in deep 
learning. Neurons of one layer connect only to neurons of the immediately preceding 
and immediately following layers. The layer that receives external data is the input 

layer. The layer that produces the ultimate result is the output layer. 
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In between them are zero or more hidden layers. Single layer and unlayered 
networks are also used. Between two layers, multiple connection patterns are 
possible. They can be ‗fully connected‘, with every neuron in one layer connecting 
to every neuron in the next layer. They can be pooling, where a group of neurons 
in one layer connect to a single neuron in the next layer, thereby reducing the 
number of neurons in that layer. Neurons with only such connections form a 
directed acyclic graph and are known as feedforward networks. Alternatively, 
networks that allow connections between neurons in the same or previous layers 
are known as recurrent networks. 

Hyperparameter 

A hyperparameter is a constant parameter whose value is set before the 
learning process begins. The values of parameters are derived via learning. Examples 
of hyperparameters include learning rate, the number of hidden layers and batch 
size. The values of some hyperparameters can be dependent on those of other 
hyperparameters. For example, the size of some layers can depend on the overall 
number of layers. 

Learning 

Learning is the adaptation of the network to better handle a task by considering 
sample observations. Learning involves adjusting the weights (and optional 
thresholds) of the network to improve the accuracy of the result. This is done by 
minimizing the observed errors. Learning is complete when examining additional 
observations does not usefully reduce the error rate. Even after learning, the error 
rate typically does not reach 0. If after learning, the error rate is too high, the 
network typically must be redesigned. Practically this is done by defining a cost 
function that is evaluated periodically during learning. As long as its output 
continues to decline, learning continues. The cost is frequently defined as a 
statistic whose value can only be approximated. The outputs are actually numbers, 
so when the error is low, the difference between the output (almost certainly a 
cat) and the correct answer (cat) is small. Learning attempts to reduce the total 
of the differences across the observations. Most learning models can be viewed 
as a straightforward application of optimization theory and statistical estimation. 

Learning rate 

The learning rate defines the size of the corrective steps that the model takes 
to adjust for errors in each observation. A high learning rate shortens the training 
time, but with lower ultimate accuracy, while a lower learning rate takes longer, 
but with the potential for greater accuracy. Optimizations such as Quickprop are 



186 Deep Learning Using Python 
 

 

primarily aimed at speeding up error minimization, while other improvements 
mainly try to increase reliability. In order to avoid oscillation inside the network 
such as alternating connection weights, and to improve the rate of convergence, 
refinements use an adaptive learning rate that increases or decreases as appropriate. 
The concept of momentum allows the balance between the gradient and the 
previous change to be weighted such that the weight adjustment depends to some 
degree on the previous change. A momentum close to 0 emphasizes the gradient, 
while a value close to 1 emphasizes the last change. 

Cost function 

While it is possible to define a cost function ad hoc, frequently the choice 
is determined by the function‘s desirable properties (such as convexity) or because 
it arises from the model (e.g. in a probabilistic model the model‘s posterior 
probability can be used as an inverse cost). 

Backpropagation 

Backpropagation is a method used to adjust the connection weights to 
compensate for each error found during learning. The error amount is effectively 
divided among the connections. Technically, backprop calculates the gradient (the 
derivative) of the cost function associated with a given state with respect to the 
weights. The weight updates can be done via stochastic gradient descent or other 
methods, such as Extreme Learning Machines, ―No-prop‖ networks, training 
without backtracking, ―weightless‖ networks, and non-connectionist neural 
networks. 

Learning paradigms 

Machine learning is commonly separated into three main learning paradigms, 
supervised learning, unsupervised learning and reinforcement learning. Each 
corresponds to a particular learning task. 

Supervised learning 

Supervised learning uses a set of paired inputs and desired outputs. The 
learning task is to produce the desired output for each input. In this case the cost 
function is related to eliminating incorrect deductions. A commonly used cost is 
the mean-squared error, which tries to minimize the average squared error between 
the network‘s output and the desired output. Tasks suited for supervised learning 
are pattern recognition (also known as classification) and regression (also known 
as function approximation). Supervised learning is also applicable to sequential 
data (e.g., for hand writing, speech and gesture recognition). This can be thought 
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of as learning with a ―teacher‖, in the form of a function that provides continuous 
feedback on the quality of solutions obtained thus far. 

Self-learning 

Self-learning in neural networks was introduced in 1982 along with a neural 
network capable of self-learning named Crossbar Adaptive Array (CAA). It is a 
system with only one input, situation s, and only one output, action (or behavior) 
a. It has neither external advice input nor external reinforcement input from the 
environment. The CAA computes, in a crossbar fashion, both decisions about 
actions and emotions (feelings) about encountered situations. The system is driven 
by the interaction between cognition and emotion. Given the memory matrix, W 
=||w(a,s)||, the crossbar self-learning algorithm in each iteration performs the 
following computation: 
In situation s perform action a; 

Receive consequence situation s‟; 
Compute emotion of being in consequence situation v(s‟); 
Update crossbar memory w‟(a,s) = w(a,s) + v(s‟). 

The backpropagated value (secondary reinforcement) is the emotion toward 
the consequence situation. The CAA exists in two environments, one is behavioral 
environment where it behaves, and the other is genetic environment, where from 
it initially and only once receives initial emotions about to be encountered situations 
in the behavioral environment. Having received the genome vector (species vector) 
from the genetic environment, the CAA will learn a goal-seeking behavior, in the 
behavioral environment that contains both desirable and undesirable situations. 

Neuroevolution 

Neuroevolution can create neural network topologies and weights using 
evolutionary computation. It is competitive with sophisticated gradient descent 
approaches. One advantage of neuroevolution is that it may be less prone to get 
caught in ―dead ends‖. 

Stochastic neural network 

Stochastic neural networks originating from Sherrington–Kirkpatrick models 
are a type of artificial neural network built by introducing random variations into 
the network, either by giving the network‘s artificial neurons stochastic transfer 
functions, or by giving them stochastic weights. This makes them useful tools for 
optimization problems, since the random fluctuations help the network escape 
from local minima. 
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Other 

In a Bayesian framework, a distribution over the set of allowed models is 
chosen to minimize the cost. Evolutionary methods, gene expression programming, 
simulated annealing, expectation-maximization, non-parametric methods and 
particle swarm optimization are other learning algorithms. Convergent recursion 
is a learning algorithm for cerebellar model articulation controller (CMAC) neural 
networks. 

Modes 

Two modes of learning are available: stochastic and batch. In stochastic 
learning, each input creates a weight adjustment. In batch learning weights are 
adjusted based on a batch of inputs, accumulating errors over the batch. Stochastic 
learning introduces ―noise‖ into the process, using the local gradient calculated 
from one data point; this reduces the chance of the network getting stuck in local 
minima. However, batch learning typically yields a faster, more stable descent to 
a local minimum, since each update is performed in the direction of the batch‘s 
average error. A common compromise is to use ―mini-batches‖, small batches with 
samples in each batch selected stochastically from the entire data set. 

TYPES 

ANNs have evolved into a broad family of techniques that have advanced the 
state of the art across multiple domains. The simplest types have one or more static 
components, including number of units, number of layers, unit weights and topology. 
Dynamic types allow one or more of these to evolve via learning. The latter are 
much more complicated, but can shorten learning periods and produce better 
results. Some types allow/require learning to be ―supervised‖ by the operator, 
while others operate independently. Some types operate purely in hardware, while 
others are purely software and run on general purpose computers. 

Some of the main breakthroughs include: convolutional neural networks that 
have proven particularly successful in processing visual and other two-dimensional 
data; long short-term memory avoid the vanishing gradient problem and can handle 
signals that have a mix of low and high frequency components aiding large- 
vocabulary speech recognition, text-to-speech synthesis, and photo-real talking 
heads; competitive networks such as generative adversarial networks in which 
multiple networks (of varying structure) compete with each other, on tasks such 
as winning a game or on deceiving the opponent about the authenticity of an input. 

NETWORK DESIGN 

Neural architecture search (NAS) uses machine learning to automate ANN 
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design. Various approaches to NAS have designed networks that compare well 
with hand-designed systems. The basic search algorithm is to propose a candidate 
model, evaluate it against a dataset and use the results as feedback to teach the 
NAS network. Available systems include AutoML and AutoKeras. 

Design issues include deciding the number, type and connectedness of network 
layers, as well as the size of each and the connection type (full, pooling, ...). 

Hyperparameters must also be defined as part of the design (they are not 
learned), governing matters such as how many neurons are in each layer, learning 
rate, step, stride, depth, receptive field and padding (for CNNs), etc. 

Use 

Using Artificial neural networks requires an understanding of their 
characteristics. • Choice of model: This depends on the data representation and the 

application. Overly complex models are slow learning. • Learning algorithm: Numerous trade-offs exist between learning 

algorithms. Almost any algorithm will work well with the correct 

hyperparameters for training on a particular data set. However, 

selecting and tuning an algorithm for training on unseen data 

requires significant experimentation. • Robustness: If the model, cost function and learning algorithm are 

selected appropriately, the resulting ANN can become robust. 

ANN capabilities fall within the following broad categories: • Function approximation, or regression analysis, including time series 

prediction, fitness approximation and modeling. • Classification, including pattern and sequence recognition, novelty 

detection and sequential decision making. • Data processing, including filtering, clustering, blind source 

separation and compression. • Robotics, including directing manipulators and prostheses. 

APPLICATIONS 

Because of their ability to reproduce and model nonlinear processes, artificial 
neural networks have found applications in many disciplines. Application areas 
include system identification and control (vehicle control, trajectory prediction, 
process control, natural resource management), quantum chemistry, general game 
playing, pattern recognition (radar systems, face identification, signal classification, 
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3D reconstruction, object recognition and more), sensor data analysis, sequence 
recognition (gesture, speech, handwritten and printed text recognition), medical 
diagnosis, finance (e.g. automated trading systems), data mining, visualization, 
machine translation, social network filtering and e-mail spam filtering. ANNs have 
been used to diagnose several types of cancers and to distinguish highly invasive 
cancer cell lines from less invasive lines using only cell shape information. 

ANNs have been used to accelerate reliability analysis of infrastructures 
subject to natural disasters and to predict foundation settlements. ANNs have also 
been used for building black-box models in geoscience: hydrology, ocean modelling 
and coastal engineering, and geomorphology. ANNs have been employed in 
cybersecurity, with the objective to discriminate between legitimate activities and 
malicious ones. For example, machine learning has been used for classifying 
Android malware, for identifying domains belonging to threat actors and for 
detecting URLs posing a security risk. Research is underway on ANN systems 
designed for penetration testing, for detecting botnets, credit cards frauds and 
network intrusions. 

ANNs have been proposed as a tool to solve partial differential equations in 
physics and simulate the properties of many-body open quantum systems. In brain 
research ANNs have studied short-term behavior of individual neurons, the dynamics 
of neural circuitry arise from interactions between individual neurons and how 
behavior can arise from abstract neural modules that represent complete subsystems. 
Studies considered long-and short-term plasticity of neural systems and their 
relation to learning and memory from the individual neuron to the system level. 

THEORETICAL PROPERTIES 

Computational power 

The multilayer perceptron is a universal function approximator, as proven by 
the universal approximation theorem. However, the proof is not constructive 
regarding the number of neurons required, the network topology, the weights and 
the learning parameters. 

A specific recurrent architecture with rational-valued weights (as opposed to 
full precision real number-valued weights) has the power of a universal Turing 
machine, using a finite number of neurons and standard linear connections. Further, 
the use of irrational values for weights results in a machine with super-Turing 
power. 

Capacity 

A model‘s ―capacity‖ property corresponds to its ability to model any given 
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function. It is related to the amount of information that can be stored in the network 
and to the notion of complexity. Two notions of capacity are known by the 
community. The information capacity and the VC Dimension. The information 
capacity of a perceptron is intensively discussed in Sir David MacKay‘s book 
which summarizes work by Thomas Cover. The capacity of a network of standard 
neurons (not convolutional) can be derived by four rules that derive from 
understanding a neuron as an electrical element. The information capacity captures 
the functions modelable by the network given any data as input. The second notion, 
is the VC dimension. VC Dimension uses the principles of measure theory and 
finds the maximum capacity under the best possible circumstances. This is, given 
input data in a specific form. As noted in, the VC Dimension for arbitrary inputs 
is half the information capacity of a Perceptron. The VC Dimension for arbitrary 
points is sometimes referred to as Memory Capacity. 

Convergence 

Models may not consistently converge on a single solution, firstly because 
local minima may exist, depending on the cost function and the model. Secondly, 
the optimization method used might not guarantee to converge when it begins far 
from any local minimum. Thirdly, for sufficiently large data or parameters, some 
methods become impractical. 

Another issue worthy to mention is that training may cross some Saddle point 
which may lead the convergence to the wrong direction. 

The convergence behavior of certain types of ANN architectures are more 
understood than others. When the width of network approaches to infinity, the 
ANN is well described by its first order Taylor expansion throughout training, and 
so inherits the convergence behavior of affine models. Another example is when 
parameters are small, it is observed that ANNs often fits target functions from low 
to high frequencies. This behavior is referred to as the spectral bias, or frequency 
principle, of neural networks. This phenomenon is the opposite to the behavior 
of some well studied iterative numerical schemes such as Jacobi method. Deeper 
neural networks have been observed to be more biased towards low frequency 
functions. 

Generalization and statistics 

Applications whose goal is to create a system that generalizes well to unseen 
examples, face the possibility of over-training. This arises in convoluted or over- 
specified systems when the network capacity significantly exceeds the needed free 
parameters. Two approaches address over-training. The first is to use cross- 
validation and similar techniques to check for the presence of over-training and 
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to select hyperparameters to minimize the generalization error. The second is to 
use some form of regularization. This concept emerges in a probabilistic (Bayesian) 
framework, where regularization can be performed by selecting a larger prior 
probability over simpler models; but also in statistical learning theory, where the 
goal is to minimize over two quantities: the ‗empirical risk‘ and the ‗structural 
risk‘, which roughly corresponds to the error over the training set and the predicted 
error in unseen data due to overfitting. 

Confidence analysis of a neural network 

Supervised neural networks that use a mean squared error (MSE) cost function 
can use formal statistical methods to determine the confidence of the trained 
model. The MSE on a validation set can be used as an estimate for variance. This 
value can then be used to calculate the confidence interval of network output, 
assuming a normal distribution. A confidence analysis made this way is statistically 
valid as long as the output probability distribution stays the same and the network 
is not modified. 

By assigning a softmax activation function, a generalization of the logistic 
function, on the output layer of the neural network (or a softmax component in 
a component-based network) for categorical target variables, the outputs can be 
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interpreted as posterior probabilities. This is useful in classification as it gives a 
certainty measure on classifications. 

The softmax activation function is: 

CRITICISM 

Training 

A common criticism of neural networks, particularly in robotics, is that they 
require too much training for real-world operation. Potential solutions include 
randomly shuffling training examples, by using a numerical optimization algorithm 
that does not take too large steps when changing the network connections following 
an example, grouping examples in so-called mini-batches and/or introducing a 
recursive least squares algorithm for CMAC. 

Theory 

A fundamental objection is that ANNs do not sufficiently reflect neuronal 
function. Backpropagation is a critical step, although no such mechanism exists 
in biological neural networks. How information is coded by real neurons is not 
known. Sensor neurons fire action potentials more frequently with sensor activation 
and muscle cells pull more strongly when their associated motor neurons receive 
action potentials more frequently. Other than the case of relaying information from 
a sensor neuron to a motor neuron, almost nothing of the principles of how 
information is handled by biological neural networks is known. 

A central claim of ANNs is that they embody new and powerful general 
principles for processing information. These principles are ill-defined. It is often 
claimed that they are emergent from the network itself. This allows simple statistical 
association (the basic function of artificial neural networks) to be described as 
learning or recognition. In 1997, Alexander Dewdney commented that, as a result, 
artificial neural networks have a ―something-for-nothing quality, one that imparts 
a peculiar aura of laziness and a distinct lack of curiosity about just how good 
these computing systems are. No human hand (or mind) intervenes; solutions are 
found as if by magic; and no one, it seems, has learned anything‖. One response 
to Dewdney is that neural networks handle many complex and diverse tasks, 
ranging from autonomously flying aircraft to detecting credit card fraud to mastering 
the game of Go. 

Technology writer Roger Bridgman commented: 

Neural networks, for instance, are in the dock not only because they have been 
hyped to high heaven, (what hasn‘t?) but also because you could create a successful 
net without understanding how it worked: the bunch of numbers that captures its 
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behaviour would in all probability be ―an opaque, unreadable table...valueless as 
a scientific resource‖. In spite of his emphatic declaration that science is not 
technology, Dewdney seems here to pillory neural nets as bad science when most 
of those devising them are just trying to be good engineers. An unreadable table 
that a useful machine could read would still be well worth having. 

Biological brains use both shallow and deep circuits as reported by brain 
anatomy, displaying a wide variety of invariance. Weng argued that the brain self- 
wires largely according to signal statistics and therefore, a serial cascade cannot 
catch all major statistical dependencies. 

Hardware 

Large and effective neural networks require considerable computing resources. 
While the brain has hardware tailored to the task of processing signals through 
a graph of neurons, simulating even a simplified neuron on von Neumann architecture 
may consume vast amounts of memory and storage. Furthermore, the designer 
often needs to transmit signals through many of these connections and their 
associated neurons – which require enormous CPU power and time. 

Schmidhuber noted that the resurgence of neural networks in the twenty-first 
century is largely attributable to advances in hardware: from 1991 to 2015, 
computing power, especially as delivered by GPGPUs (on GPUs), has increased 
around a million-fold, making the standard backpropagation algorithm feasible for 
training networks that are several layers deeper than before. The use of accelerators 
such as FPGAs and GPUs can reduce training times from months to days. 

Neuromorphic engineering or a physical neural network addresses the hardware 
difficulty directly, by constructing non-von-Neumann chips to directly implement 
neural networks in circuitry. Another type of chip optimized for neural network 
processing is called a Tensor Processing Unit, or TPU. 

Practical counterexamples 

Analyzing what has been learned by an ANN is much easier than analyzing 
what has been learned by a biological neural network. Furthermore, researchers 
involved in exploring learning algorithms for neural networks are gradually 
uncovering general principles that allow a learning machine to be successful. For 
example, local vs. non-local learning and shallow vs. deep architecture. 

Hybrid approaches 

Advocates of hybrid models (combining neural networks and symbolic 
approaches), claim that such a mixture can better capture the mechanisms of the 
human mind. 
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The representation power of functions refers to their ability to model or 
approximate various types of relationships within data. This concept is crucial in 
fields such as machine learning, where functions are used to map inputs to outputs. 
A function with high representation power can capture complex patterns and 
relationships in data. 

Expressiveness: This refers to the range of functions or models that can be 
represented. For example, linear functions have limited expressiveness, as they 
can only model linear relationships. In contrast, neural networks with sufficient 
depth and non-linear activation functions have high expressiveness, capable of 
modeling intricate, non-linear relationships. 

This chapter covers the content discussed in the Representation Power of 
Functions module of the Deep Learning course and all the images are taken from 
the same module. So far we have seen three models: MP Neuron, Perceptron and 
Sigmoid Neuron but none of them were able to deal with the non-linearly separable 
data. 

The Representation power of functions which will help us understand why 
we need complex functions as our model. 

We need to find continuous functions and the reason for that is very simple 
as we are going to use the Gradient Descent Algorithm where we move in a 
direction opposite to the gradient while updating the parameters as per the below 
update rule. 

 

 

Now to compute the derivative with respect to the parameters, the function 
must be differentiable so that‘s why we want to have a continuous function. 
Example of continuous functions: 
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We need complex functions for modeling complex relations. Let‘s take 
an example where we have two features: Cost Price and screen size of a 
phone 
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Every point corresponds to one phone. 

Let‘s say we like a phone whose screen size is between 3.5 to 4.5 and the 
price range is from 8k to 12k. So, data would look like: 

 

 
As is clear, this is non-linear data. We cannot draw a line in any way such 

that it can separate the red points from the blue points. 

We want the model to be such that it gives an output of 0 for all the points 
in the green region(all the blue points) and it outputs 1 for all the points in the 
red region(all the red points) in the below image: 
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We want the function output to be 1 for the red points and the function output 
to be 0 for the blue points that mean we want our function to be of the following 
form: 
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We can notice that this is not a very smooth function, it has sharp edges(in 
blue in the above image) which means it will not be differentiable at certain points. 
What we want is a very smooth function, a function of the following form: 

This is one of the reasons why we need complex functions because a lot of 
real-world data would require functions of above form and the above function is 
not like a Sigmoid Neuron(S-shaped), it‘s not like an MP Neuron or 
Perceptron(Linear), so we need different family of functions, we need more 
complex functions than what we have seen so far. 
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Below is the Sigmoid function that we have: 
 
 

 
 
 

And if we use sigmoid to plot the data, we would get: 
 

Now no matter what we set the values of parameters, we are not going to get 
a surface that can exactly fit the data. 
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Artificial neural networks are a fascinating area of study, although they can 
be intimidating when just getting started. There is a lot of specialized terminology 
used when describing the data structures and algorithms used in the field. Kick- 

start your project with my new book Deep Learning With Python, including step- 

by-step tutorials and the Python source code files for all examples. 

Let‘s get started. 

Crash course in neural networks 

Multi-Layer Perceptrons 

The field of artificial neural networks is often just called neural networks or 
multi-layer perceptrons after perhaps the most useful type of neural network. A 
perceptron is a single neuron model that was a precursor to larger neural networks. 

It is a field that investigates how simple models of biological brains can be 
used to solve difficult computational tasks like the predictive modeling tasks we 
see in machine learning. The goal is not to create realistic models of the brain 
but instead to develop robust algorithms and data structures that we can use to 
model difficult problems. 

The power of neural networks comes from their ability to learn the representation 
in your training data and how best to relate it to the output variable you want to 
predict. In this sense, neural networks learn mapping. Mathematically, they are 
capable of learning any mapping function and have been proven to be a universal 
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approximation algorithm. The predictive capability of neural networks comes from 
the hierarchical or multi-layered structure of the networks. The data structure can 
pick out (learn to represent) features at different scales or resolutions and combine 
them into higher-order features, for example, from lines to collections of lines to 
shapes. 

Neurons 

The building blocks for neural networks are artificial neurons. 

These are simple computational units that have weighted input signals and 
produce an output signal using an activation function. 

 

NEURON WEIGHTS 

Model of a simple neuron 

You may be familiar with linear regression, where the weights on the inputs 
are very much like the coefficients used in a regression equation. 

Like linear regression, each neuron also has a bias which can be thought of 
as an input that always has the value 1.0, and it, too, must be weighted. 

For example, a neuron may have two inputs, which require three weights— 
one for each input and one for the bias. 

Weights are often initialized to small random values, such as values from 0 
to 0.3, although more complex initialization schemes can be used. 

Like linear regression, larger weights indicate increased complexity and fragility. 
Keeping weights in the network is desirable, and regularization techniques can 
be used. 
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Activation 

The weighted inputs are summed and passed through an activation function, 
sometimes called a transfer function. 

An activation function is a simple mapping of summed weighted input to the 
output of the neuron. It is called an activation function because it governs the 
threshold at which the neuron is activated and the strength of the output signal. 

Historically, simple step activation functions were used when the summed 
input was above a threshold of 0.5, for example. Then the neuron would output 
a value of 1.0; otherwise, it would output a 0.0. 

Traditionally, non-linear activation functions are used. This allows the network 
to combine the inputs in more complex ways and, in turn, provide a richer 
capability in the functions they can model. Non-linear functions like the logistic, 
also called the sigmoid function, were used to output a value between 0 and 1 
with an s-shaped distribution. The hyperbolic tangent function, also called tanh, 
outputs the same distribution over the range -1 to +1. 

Networks of Neurons 

Neurons are arranged into networks of neurons. 

A row of neurons is called a layer, and one network can have multiple layers. 
The architecture of the neurons in the network is often called the network topology. 

Model of a simple network 

INPUT OR VISIBLE LAYERS 

The bottom layer that takes input from your dataset is called the visible layer 
because it is the exposed part of the network. Often a neural network is drawn 
with a visible layer with one neuron per input value or column in your dataset. 
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These are not neurons as described above but simply pass the input value through 
to the next layer. 

Hidden Layers 

Layers after the input layer are called hidden layers because they are not 
directly exposed to the input. The simplest network structure is to have a single 
neuron in the hidden layer that directly outputs the value. 

Given increases in computing power and efficient libraries, very deep neural 
networks can be constructed. Deep learning can refer to having many hidden layers 
in your neural network. They are deep because they would have been unimaginably 
slow to train historically but may take seconds or minutes to train using modern 
techniques and hardware. 

Output Layer 

The final hidden layer is called the output layer, and it is responsible for 
outputting a value or vector of values that correspond to the format required for 
the problem. 

The choice of activation function in the output layer is strongly constrained 
by the type of problem that you are modeling. For example: 

• A regression problem may have a single output neuron, and the neuron 
may have no activation function. 

• A binary classification problem may have a single output neuron and use 
a sigmoid activation function to output a value between 0 and 1 to represent 
the probability of predicting a value for the class 1. This can be turned 
into a crisp class value by using a threshold of 0.5 and snap values less 
than the threshold to 0, otherwise to 1. 

• A multi-class classification problem may have multiple neurons in the 
output layer, one for each class (e.g., three neurons for the three classes 
in the famous iris flowers classification problem). In this case, a softmax 
activation function may be used to output a probability of the network 
predicting each of the class values. Selecting the output with the highest 
probability can be used to produce a crisp class classification value. 

TRAINING NETWORKS 

Once configured, the neural network needs to be trained on your dataset. 

Data Preparation 

You must first prepare your data for training on a neural network. 
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Data must be numerical, for example, real values. If you have categorical data, 
such as a sex attribute with the values ―male‖ and ―female,‖ you can convert it 
to a real-valued representation called one-hot encoding. This is where one new 
column is added for each class value (two columns in the case of sex of male 
and female), and a 0 or 1 is added for each row depending on the class value for 
that row. 

This same one-hot encoding can be used on the output variable in classification 
problems with more than one class. This would create a binary vector from a single 
column that would be easy to directly compare to the output of the neuron in the 
network‘s output layer. That, as described above, would output one value for each 
class. 

Neural networks require the input to be scaled in a consistent way. You can 
rescale it to the range between 0 and 1, called normalization. Another popular 
technique is to standardize it so that the distribution of each column has a mean 
of zero and a standard deviation of 1. Scaling also applies to image pixel data. 
Data such as words can be converted to integers, such as the popularity rank of 
the word in the dataset and other encoding techniques. 

Stochastic Gradient Descent 

The classical and still preferred training algorithm for neural networks is 
called stochastic gradient descent. 

This is where one row of data is exposed to the network at a time as input. 
The network processes the input upward, activating neurons as it goes to finally 
produce an output value. This is called a forward pass on the network. It is the 
type of pass that is also used after the network is trained in order to make 
predictions on new data. 

The output of the network is compared to the expected output, and an error 
is calculated. This error is then propagated back through the network, one layer 
at a time, and the weights are updated according to the amount they contributed 
to the error. This clever bit of math is called the backpropagation algorithm. 

The process is repeated for all of the examples in your training data. One round 
of updating the network for the entire training dataset is called an epoch. A network 
may be trained for tens, hundreds, or many thousands of epochs. 

Weight Updates 

The weights in the network can be updated from the errors calculated for each 
training example, and this is called online learning. It can result in fast but also 
chaotic changes to the network. 
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Alternatively, the errors can be saved across all the training examples, and 
the network can be updated at the end. This is called batch learning and is often 
more stable. 

Typically, because datasets are so large and because of computational 
efficiencies, the size of the batch, the number of examples the network is shown 
before an update, is often reduced to a small number, such as tens or hundreds 
of examples. 

The amount that weights are updated is controlled by a configuration parameter 
called the learning rate. It is also called the step size and controls the step or change 
made to a network weight for a given error. Often small weight sizes are used, 
such as 0.1 or 0.01 or smaller. 

The update equation can be complemented with additional configuration terms 
that you can set. 

• Momentum is a term that incorporates the properties from the previous 
weight update to allow the weights to continue to change in the same 
direction even when there is less error being calculated. 

• Learning Rate Decay is used to decrease the learning rate over epochs to 
allow the network to make large changes to the weights at the beginning 
and smaller fine-tuning changes later in the training schedule. 

Prediction 

Once a neural network has been trained, it can be used to make predictions. 

You can make predictions on test or validation data in order to estimate the 
skill of the model on unseen data. You can also deploy it operationally and use 
it to make predictions continuously. The network topology and the final set of 
weights are all you need to save from the model. 

Predictions are made by providing the input to the network and performing 
a forward-pass, allowing it to generate an output you can use as a prediction. 

 
 

 
 

Large-scale automatic speech recognition is the first and most convincing 
successful case of deep learning. LSTM RNNs can learn ―Very Deep Learning‖ 
tasks that involve multi-second intervals containing speech events separated by 
thousands of discrete time steps, where one time step corresponds to about 10 ms. 
LSTM with forget gates is competitive with traditional speech recognizers on 
certain tasks. 

The initial success in speech recognition was based on small-scale recognition 
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tasks based on TIMIT. The data set contains 630 speakers from eight major dialects 
of American English, where each speaker reads 10 sentences. Its small size lets 
many configurations be tried. More importantly, the TIMIT task concerns phone- 
sequence recognition, which, unlike word-sequence recognition, allows weak 
phone bigram language models. This lets the strength of the acoustic modeling 
aspects of speech recognition be more easily analyzed. The error rates listed below, 
including these early results and measured as percent phone error rates (PER), 
have been summarized since 1991. 

 

Method Percent phoneerror rate (PER) (%) 

Randomly Initialized RNN 26.1 

Bayesian Triphone GMM-HMM 25.6 

Hidden Trajectory (Generative) Model 24.8 

Monophone Randomly Initialized DNN 23.4 

Monophone DBN-DNN 22.4 

Triphone GMM-HMM with BMMI Training 21.7 

Monophone DBN-DNN on fbank 20.7 

Convolutional DNN 20.0 

Convolutional DNN w. Heterogeneous Pooling 18.7 

Ensemble DNN/CNN/RNN 18.3 

Bidirectional LSTM 17.8 

Hierarchical Convolutional Deep Maxout Network 16.5 

The debut of DNNs for speaker recognition in the late 1990s and speech 
recognition around 2009-2011 and of LSTM around 2003–2007, accelerated 
progress in eight major areas: 

• Scale-up/out and accelerated DNN training and decoding 

• Sequence discriminative training 

• Feature processing by deep models with solid understanding of the 
underlying mechanisms 

• Adaptation of DNNs and related deep models 

• Multi-task and transfer learning by DNNs and related deep models 

• CNNs and how to design them to best exploit domain knowledge of speech 

• RNN and its rich LSTM variants 

• Other types of deep models including tensor-based models and integrated 
deep generative/discriminative models. 
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All major commercial speech recognition systems (e.g., Microsoft Cortana, 
Xbox, Skype Translator, Amazon Alexa, Google Now, Apple Siri, Baidu and 
iFlyTek voice search, and a range of Nuance speech products, etc.) are based on 
deep learning. 

Image recognition 

A common evaluation set for image classification is the MNIST database data 
set. MNIST is composed of handwritten digits and includes 60,000 training examples 
and 10,000 test examples. As with TIMIT, its small size lets users test multiple 
configurations. A comprehensive list of results on this set is available. 

Deep learning-based image recognition has become ―superhuman‖, producing 
more accurate results than human contestants. This first occurred in 2011 in 
recognition of traffic signs, and in 2014, with recognition of human faces. 

Deep learning-trained vehicles now interpret 360° camera views. Another 
example is Facial Dysmorphology Novel Analysis (FDNA) used to analyze cases 
of human malformation connected to a large database of genetic syndromes. 

Visual art processing 

Closely related to the progress that has been made in image recognition is the 
increasing application of deep learning techniques to various visual art tasks. 
DNNs have proven themselves capable, for example, of 

• identifying the style period of a given painting 

• Neural Style Transfer – capturing the style of a given artwork and applying 
it in a visually pleasing manner to an arbitrary photograph or video 

• generating striking imagery based on random visual input fields. 

Natural language processing 

Neural networks have been used for implementing language models since the 
early 2000s. LSTM helped to improve machine translation and language modeling. 

Other key techniques in this field are negative sampling and word embedding. 
Word embedding, such as word2vec, can be thought of as a representational layer 
in a deep learning architecture that transforms an atomic word into a positional 
representation of the word relative to other words in the dataset; the position is 
represented as a point in a vector space. Using word embedding as an RNN input 
layer allows the network to parse sentences and phrases using an effective 
compositional vector grammar. A compositional vector grammar can be thought 
of as probabilistic context free grammar (PCFG) implemented by an RNN. Recursive 
auto-encoders built atop word embeddings can assess sentence similarity and 
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detect paraphrasing. Deep neural architectures provide the best results for 
constituency parsing, sentiment analysis, information retrieval, spoken language 
understanding, machine translation, contextual entity linking, writing style 
recognition, Text classification and others. 

Recent developments generalize word embedding to sentence embedding. 

Google Translate (GT) uses a large end-to-end long short-term memory (LSTM) 
network. Google Neural Machine Translation (GNMT) uses an example-based 
machine translation method in which the system ―learns from millions of examples.‖ 
It translates ―whole sentences at a time, rather than pieces. Google Translate 
supports over one hundred languages. The network encodes the ―semantics of the 
sentence rather than simply memorizing phrase-to-phrase translations‖. GT uses 
English as an intermediate between most language pairs. 

Drug discovery and toxicology 

A large percentage of candidate drugs fail to win regulatory approval. These 
failures are caused by insufficient efficacy (on-target effect), undesired interactions 
(off-target effects), or unanticipated toxic effects. Research has explored use of 
deep learning to predict the biomolecular targets, off-targets, and toxic effects of 
environmental chemicals in nutrients, household products and drugs. 

AtomNet is a deep learning system for structure-based rational drug design. 
AtomNet was used to predict novel candidate biomolecules for disease targets 
such as the Ebola virus and multiple sclerosis. 

In 2017 graph neural networks were used for the first time to predict various 
properties of molecules in a large toxicology data set. In 2019, generative neural 
networks were used to produce molecules that were validated experimentally all 
the way into mice. 

Customer relationship management 

Deep reinforcement learning has been used to approximate the value of 
possible direct marketing actions, defined in terms of RFM variables. The estimated 
value function was shown to have a natural interpretation as customer lifetime 
value. 

Recommendation systems 

Recommendation systems have used deep learning to extract meaningful 
features for a latent factor model for content-based music and journal 
recommendations. Multi-view deep learning has been applied for learning user 
preferences from multiple domains. The model uses a hybrid collaborative and 
content-based approach and enhances recommendations in multiple tasks. 
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Bioinformatics 

An autoencoder ANN was used in bioinformatics, to predict gene ontology 
annotations and gene-function relationships. In medical informatics, deep learning 
was used to predict sleep quality based on data from wearables and predictions 
of health complications from electronic health record data. 

Medical image analysis 

Deep learning has been shown to produce competitive results in medical 
application such as cancer cell classification, lesion detection, organ segmentation 
and image enhancement. Modern deep learning tools demonstrate the high accuracy 
of detecting various diseases and the helpfulness of their use by specialists to 
improve the diagnosis efficiency. 

Mobile advertising 

Finding the appropriate mobile audience for mobile advertising is always 
challenging, since many data points must be considered and analyzed before a 
target segment can be created and used in ad serving by any ad server. Deep 
learning has been used to interpret large, many-dimensioned advertising datasets. 
Many data points are collected during the request/serve/click internet advertising 
cycle. This information can form the basis of machine learning to improve ad 
selection. 

Image restoration 

Deep learning has been successfully applied to inverse problems such as 
denoising, super-resolution, inpainting, and film colorization. These applications 
include learning methods such as ―Shrinkage Fields for Effective Image Restoration‖ 
which trains on an image dataset, and Deep Image Prior, which trains on the image 
that needs restoration. 

Financial fraud detection 

Deep learning is being successfully applied to financial fraud detection, tax 
evasion detection, and anti-money laundering. A potentially impressive 
demonstration of unsupervised learning as prosecution of financial crime is required 
to produce training data. 

Also of note is that while the state of the art model in automated financial 
crime detection has existed for quite some time, the applications for deep learning 
referred to here dramatically under perform much simpler theoretical models. One 
such, yet to be implemented model, the Sensor Location Heuristic and Simple Any 
Human Detection for Financial Crimes (SLHSAHDFC), is an example. 
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The model works with the simple heuristic of choosing where it gets its input 
data. By placing the sensors by places frequented by large concentrations of wealth 
and power and then simply identifying any live human being, it turns out that the 
automated detection of financial crime is accomplished at very high accuracies 
and very high confidence levels. Even better, the model has shown to be extremely 
effective at identifying not just crime but large, very destructive and egregious 
crime. Due to the effectiveness of such models it is highly likely that applications 
to financial crime detection by deep learning will never be able to compete. 

Military 

The United States Department of Defense applied deep learning to train robots 
in new tasks through observation. 

Partial differential equations 

Physics informed neural networks have been used to solve partial differential 
equations in both forward and inverse problems in a data driven manner. One 
example is the reconstructing fluid flow governed by the Navier-Stokes equations. 
Using physics informed neural networks does not require the often expensive mesh 
generation that conventional CFD methods relies on. 

Image Reconstruction 

Image reconstruction is the reconstruction of the underlying images from the 
image-related measurements. Several works showed the better and superior 
performance of the deep learning methods compared to analytical methods for 
various applications, e.g., spectral imaging and ultrasound imaging. 

Epigenetic clock 

An epigenetic clock is a biochemical test that can be used to measure age. 
Galkin et al. used deep neural networks to train an epigenetic aging clock of 
unprecedented accuracy using >6,000 blood samples. The clock uses information 
from 1000 CpG sites and predicts people with certain conditions older than healthy 
controls: IBD, frontotemporal dementia, ovarian cancer, obesity. The aging clock 
is planned to be released for public use in 2021 by an Insilico Medicine spinoff 
company Deep Longevity. 

 
 

   
 

FRAUD DETECTION 

Fraud is a growing problem in the digital world. In 2021, consumers reported 
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2.8 million cases of fraud to the Federal Trade Commission. Identify theft and 
imposter scams were the two most common fraud categories. 

To help prevent fraud, companies like Signifyd use deep learning to detect 
anomalies in user transactions. Those companies deploy deep learning to collect 
data from a variety of sources, including the device location, length of stride and 
credit card purchasing patterns to create a unique user profile. 

Mastercard has taken a similar approach, leveraging its Decision Intelligence 
and AI Express platforms to more accurately detect fraudulent credit card activity. 
And for companies that rely on e-commerce, Riskified is making consumer 
finance easier by reducing the number of bad orders and chargebacks for 
merchants. 

CUSTOMER RELATIONSHIP MANAGEMENT 

Customer relationship management systems are often referred to as the ―single 
source of truth‖ for revenue teams. They contain emails, phone call records and 
notes about all of the company‘s current and former customers as well as its 
prospects. Aggregating that information has helped revenue teams provide a better 
customer experience, but the introduction of deep learning in CRM systems has 
unlocked another layer of customer insights. 

Deep learning is able to sift through all of the scraps of data a company collects 
about its prospects to reveal trends about why customers buy, when they buy and 
what keeps them around. This includes predictive lead scoring, which helps 
companies identify customers they have the best chances to close; scraping data 
from customer notes to make it easier to identify trends; and predictions about 
customer support needs. 

COMPUTER VISION 

Deep learning aims to mimic the way the human mind digests information 
and detects patterns, which makes it a perfect way to train vision-based AI 
programs. Using deep learning models, those platforms are able to take in a series 
of labeled photo sets to learn to detect objects like airplanes, faces and guns. 

The application for image recognition is expansive. Neurala uses an algorithm 
it calls Lifelong-DNN to complete manufacturing quality inspections. Others, like 
ZeroEyes, use deep learning to detect firearms in public places like schools and 
government property. When a gun is detected, the system is designed to alert police 
in an effort to prevent shootings. And finally, companies like Motional rely on 
AI technologies to reinforce their LiDAR, radar and camera systems in autonomous 
vehicles. 
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Agriculture 

Agriculture will remain a key source of food production in the coming years, 
so people have found ways to make the process more efficient with deep learning 
and AI tools. In fact, a 2021 Forbes article revealed that the agriculture industry 
is expected to invest $4 billion in AI solutions by 2026. Farmers have already 
found various uses for the technology, wielding AI to detect intrusive wild animals, 
forecast crop yields and power self-driving machinery. 

Blue River Technology has explored the possibilities of self-driven farm 
products by combining machine learning, computer vision and robotics. The 
results have been promising, leading to smart machines — like a lettuce bot that 
knows how to single out weeds for chemical spraying while leaving plants alone. 
In addition, companies like Taranis blend computer vision and deep learning to 
monitor fields and prevent crop loss due to weeds, insects and other causes. 

Vocal AI 

When it comes to recreating human speech or translating voice to text, deep 
learning has a critical role to play. Deep learning models enable tools like Google 
Voice Search and Siri to take in audio, identify speech patterns and translate it 
into text. Then there‘s DeepMind‘s WaveNet model, which employs neural networks 
to take text and identify syllable patterns, inflection points and more. This enables 
companies like Google to train their virtual assistants to sound more human. In 
addition, Mozilla‘s 2017 RRNoise Project used it to identify and suppress 
background noise in audio files, providing users with clearer audio. 

NATURAL LANGUAGE PROCESSING 

The introduction of natural language processing technology has made it possible 
for robots to read messages and divine meaning from them. Still, the process can 
be somewhat oversimplified, failing to account for the ways that words combine 
together to change the meaning or intent behind a sentence. 

Deep learning enables natural language processors to identify more complicated 
patterns in sentences to provide a more accurate interpretation. Companies like 
Gamalon use deep learning to power a chatbot that is able to respond to a larger 
volume of messages and provide more accurate responses. 

Other companies like Strong apply it in its NLP tool to help users translate 
text, categorize text to help mine data from a collection of messages and identify 
sentiment in text. Grammarly also uses deep learning in combination with 
grammatical rules and patterns to help users identify the errors and tone of their 
messages. 
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Data Refining 

When large amounts of raw data are collected, it‘s hard for data scientists to 
identify patterns, draw insights or do much with it. It needs to be processed. Deep 
learning models are able to take that raw data and make it accessible. Companies 
like Descartes Labs use a cloud-based supercomputer to refine data. Making sense 
of swaths of raw data can be useful for disease control, disaster mitigation, food 
security and satellite imagery. 

Virtual Assistants 

The divide between humans and machines continues to blur as virtual assistants 
become a part of everyday life. These AI-driven tools display a mix of AI, machine 
learning and deep learning techniques in order to process commands. Apple‘s Siri 
and Google‘s Google Assistant are two prominent examples, with both being able 
to operate across laptops, speakers, TVs and other devices. People can expect to 
see more virtual assistants and chatbots in the near future as the industry is on 
track to undergo plenty of growth through 2028. 

Autonomous Vehicles 

Driving is all about taking in external factors like the cars around you, street 
signs and pedestrians and reacting to them safely to get from point A to B. While 
we‘re still a ways away from fully autonomous vehicles, deep learning has played 
a crucial role in helping the technology come to fruition. It allows autonomous 
vehicles to take into account where you want to go, predict what the obstacles 
in your environment will do and create a safe path to get you to that location. 

For instance, Zoox has used AI technologies to help its fully autonomous 
robotaxi vehicles learn from some of the most challenging driving situations to 
improve their decision-making under various circumstances. Other self-driving car 
companies that use deep learning to power their technology include Tesla-owned 
DeepScale and Waymo, a subsidiary of Google. 

Supercomputers 

While some software uses deep learning in its solution, if you want to build 
your own deep learning model, you need a supercomputer. Companies like Boxx 
and Nvidia have built workstations that can handle the processing power needed 
to build deep learning models. NVIDIA‘s DGX Station claims to be the ―equivalent 
of hundreds of traditional servers,‖ and enables users to test and tweak their 
models. Boxx‘s APEXX W-class products work with deep learning frameworks 
to provide more powerful processing and dependable computer performance. 
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Investment Modeling 

Investment modeling is another industry that has benefited from deep learning. 
Predicting the market requires tracking and interpreting dozens of data points from 
earning call conversations to public events to stock pricing. Companies like Aiera 
use an adaptive deep learning platform to provide institutional investors with real- 
time analysis on individual equities, content from earnings calls and public company 
events. Even some of the bigger names like Morgan Stanley are joining the AI 
movement, using AI technologies to provide sound advice on wealth management 
through robo-advisors. 

Climate Change 

Organizations are stepping up to help people adapt to quickly accelerating 
environmental change. One Concern has emerged as a climate intelligence leader, 
factoring environmental events such as extreme weather into property risk 
assessments. Meanwhile, NCX has expanded the carbon-offset movement to include 
smaller landowners by using AI technology to create an affordable carbon 
marketplace. 

E-commerce 

Online shopping is now the de-facto way people purchase goods, but it can 
still be frustrating to scroll through dozens of pages to find the right pair of shoes 
that match your style. Some e-commerce companies are turning to deep learning 
to make the hunt easier. 

Among Clarifai‘s many deep learning offerings is a tool that helps brands with 
image labeling to boost SEO traffic and surface alternative products for users when 
an item is out of stock. E-commerce giant eBay also applies a suite of AI, machine 
learning and deep learning techniques to power its global online marketplace and 
further enhance its search engine capabilities. 

Emotional Intelligence 

While computers may not be able to replicate human emotions, they are 
getting better at understanding our moods thanks to deep learning. Patterns like 
a shift in tone, a slight frown or a huff are all valuable data signals that can help 
AI detect our moods. 

Companies like Affectiva are using deep learning to track all of those vocal 
and facial reactions to provide a nuanced understanding of our moods. Others like 
Cogito analyze the behaviors of customer service representatives to gauge their 
emotional intelligence and offer real-time advice for improved interactions. 
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Entertainment 

Ever wonder how streaming platforms seem to intuit the perfect show for you 
to binge-watch next? Well, you have deep learning to thank for that. Streaming 
platforms aggregate tons of data on what content you choose to consume and what 
you ignore. Take Netflix as an example. The streaming platform uses machine 
learning to find patterns in what its viewers watch so that it can create a personalized 
experience for its users. 

Deep Dreaming 

Introduced back in 2015 by a team of Google engineers, the concept of deep 
dreaming has given another dimension to the realm of deep learning. Deep dreaming 
involves feeding algorithms to machines, which can then mimic the process of 
dreaming in human neural networks. A website called Deep Dream Generator has 
taken advantage of these algorithms, allowing creators to produce breathtaking 
digital art. 

Advertising 

Companies can glean a lot of information from how a user interacts with its 
marketing. It can signal intent to buy, show that the product resonates with them 
or that they want to learn more information. Many marketing tech firms are using 
deep learning to generate even more insights into customers. Companies like 
6sense use deep learning to train their software to better understand buyers based 
on how they engage with an app or navigate a website. This can be used to help 
businesses more accurately target potential buyers and create tailored ad campaigns. 
Other firms like Dstillery use it to understand more about a customer‘s consumers 
to help each ad campaign reach the target audience for the product. 

Manufacturing 

The success of a factory often hinges on machines, humans and robots working 
together as efficiently as possible to produce a replicable product. When one part 
of the production gets out of whack, it can come at a devastating cost to the 
company. Deep learning is being used to make that process even more efficient 
and eliminate those errors. 

Companies like OneTrack are using it to scan factory floors for anomalies like 
a teetering box or an improperly used forklift and alert workers to safety risks. 
The goal is to prevent errors that can slow down production and cause harm. Then 
there‘s Fanuc, which uses it to train its AI Error Proofing tool to discern good 
parts from bad parts during the manufacturing process. Energy giant General 
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Electric also uses deep learning in its Predix platform to track and find all possible 
points of failure on a factory floor. 

Healthcare 

The healthcare industry contends with inefficiencies, but deep learning plays 
a crucial role in streamlining the patient experience. KenSci, a company under 
the Advata umbrella, uses AI technology that learns from past performance data 
to predict how much space and what resources teams need to provide proper 
patient care. In addition, PathAI harnesses the predictive abilities of AI to garner 
more accurate data from drug research, clinical trials and patient diagnostics. Deep 
learning has also been proven to detect skin cancer through images, according to 
a National Center for Biotechnology Report. 

Sports 

Top-performing athletes are able to be more intentional about the ways they 
improve their games, thanks to AI-driven data. Companies like Hawk-Eye 
Innovations have raised the level of professional play through advanced replay 
systems, ball-tracking technology and timely game data. However, this attention 
to detail isn‘t reserved for sports royalty. Nex has built the HomeCourt app that 
basketball players of all skill levels can consult for insights on how to fine-tune 
their shooting motion and more. 

 
 

  
 

 

For us humans, the novel idea of creating machines that can mimic human 
intellect, and even augment it, has been and still is, of great interest. And it is 
thanks to the efforts made around this idea that Artificial Intelligence, Machine 
Learning and later, Deep Learning came into existence. 

Now, these three concepts, or rather technologies, are interesting on their own. 
However, citing the limitations of the topic we have at hand, we will primarily 
discuss Deep Learning here. 

Deep Learning is probably the closest we have come so far to engineering 
a system based on the working of the brain. It is a complicated system that 
endeavors to solve problems and learn concepts that we were once limited to 
human intelligence. 

Identifying images, translating human language, conversing with humans and 
assisting computers to make independent decisions are some of the innumerable 
purposes that Deep Learning fulfils. 
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Many businesses and organizations across the globe are now employing Deep 
Learning to fuel their growth and enhance their operations. They are using it to 
predict consumer behaviour, detect changes in market trends, create marketing 
strategies and whatnot. 

Furthermore, according to ReportLinker, the market for Deep Learning will 
be valued at a whopping $44.3 Billion by 2027. 

Thus, it makes sense for us to know about some of the most commonplace 
but significant Deep Learning applications in today‘s world. And that‘s what we 
are going to look at in this chapter on applications of deep learning. But before 
that, let us gather some insights into what deep learning is. 

UNDERSTANDING DEEP LEARNING 

Deep learning is fundamentally a subdiscipline of Machine Learning (hence 
the ―learning‖ in the name). It bases its operations on another subset of machine 
learning called Neural Networks. 

Neural Networks are networks of neurons or nodes – algorithmic locations 
where the computation of inputs takes place and output is produced. Neural 
networks are either biological or artificial, with the latter ones finding use in many 
AI-propelled applications. 

These networks are essentially a somewhat less sophisticated reproduction of 
the biological structure of the human brain, with the nodes signifying the neurons 
or nerve cells. 

 

Thus, Deep Learning is a machine learning technique composed of Artificial 
Neural Networks (ANNs) that are layered. Each layer comprises a certain number 
of neurons that receive input, compute it, and forward the output to the next layer 
until it reaches the final layer. Typically, except for the first layer, called the input 
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layer, and the last layer, the output layer, the rest of the layers stay hidden in a 
deep learning system. 

APPLICATIONS OF DEEP LEARNING 

Now, it is time we answered the million-dollar question, ―which are common 
applications of deep learning in artificial intelligence(ai)?‖ 

Healthcare 
 

The healthcare sector has long been one of the prominent adopters of modern 
technology to overhaul itself. As such, it is not surprising to see Deep Learning 
finding uses in interpreting medical data for 

• the diagnosis, prognosis & treatment of diseases 

• drug prescription 

• analysing MRIs, CT scans, ECG, X-Rays, etc., to detect and notify about 
medical anomalies 

• personalising treatment 

• monitoring the health of patients and more 

One notable application of deep learning is found in the diagnosis and treatment 
of cancer. 

Medical professionals use a CNN or Convolutional Neural Network, a Deep 
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learning method, to grade different types of cancer cells. They expose high-res 
histopathological images to deep CNN models after magnifying them 20X or 40X. 
The deep CNN models then demarcate various cellular features within the sample 
and detect carcinogenic elements. 

Personalized Marketing 

Personalized marketing is a concept that has seen much action in the recent 
few years. Marketers are now aiming their advertising campaigns at the pain points 
of individual consumers, offering them exactly what they need. And Deep Learning 
is playing a significant role in this. 

Today, consumers are generating a lot of data thanks to their engagement with 
social media platforms, IoT devices, web browsers, wearables and the ilk. However, 
most of the data generated from these sources are disparate (text, audio, video, 
location data, etc.). 

To cope with this, businesses use customisable Deep Learning models to 
interpret data from different sources and distil them to extract valuable customer 
insights. They then use this information to predict consumer behaviour and target 
their marketing efforts more efficiently. 

So now you understand how those online shopping sites know what products 
to recommend to you. 

Financial Fraud Detection 

Virtually no sector is exempt from the evil called ―fraudulent transactions‖ 
or ―financial fraud‖. However, it is the financial corporations (banks, insurance 
firms, etc.) that have to bear the brunt of this menace the most. Not a day goes 
by when criminals attack financial institutions. There are a plethora of ways to 
usurp financial resources from them. 

Thus, for these organizations, detecting and predicting financial fraud is 
critical, to say the least. And this is where Deep Learning comes into the picture. 

Financial organizations are now using the concept of anomaly detection to flag 
inappropriate transactions. They employ deep learning algorithms, such as logistic 
regression (credit card fraud detection is a prime use case), decision trees, random 
forest, etc., to analyze the patterns common to valid transactions. Then, these 
models are put into action to flag financial transactions that seem potentially 
fraudulent. 

Some examples of fraud detection being deterred by Deep Learning include: 

• identity theft 



Artificial Deep Neural Networks 221 
 

 

 

• insurance fraud 

• investment fraud 

• fund misappropriation 

Natural Language Processing 

NLP or Natural Language Processing is another prominent area where Deep 
Learning is showing promising results. 

Natural Language Processing, as the name suggests, is all about enabling 
machines to analyze and understand human language. The premise sounds simple, 
right? Well, the thing is, human language is punishingly complex for machines 
to interpret. It is not just the alphabet and words but also the context, the accents, 
the handwriting and whatnot that discourage machines from processing or generating 
human language accurately. 

Deep Learning-based NLP is doing away with many of the issues related to 
understanding human language by training machines (Autoencoders and Distributed 
Representation) to produce appropriate responses to linguistic inputs. 

One such example is the personal assistants we use on our smartphones. These 
applications come embedded with Deep Learning imbued NLP models to understand 
human speech and return appropriate output. It is, thus, no wonder why Siri and 
Alexa sound so much like how people talk in real life. 

Another use case of Deep Learning-based NLP is how websites written in one 
human language automatically get translated to the user-specified language. 

Autonomous Vehicles 

The concept of building automated or self-governing vehicles goes back 45 
years when the Tsukuba Mechanical Engineering Laboratory unveiled the world‘s 
first semi-automatic car. The car, a technological marvel then, carried a pair of 
cameras and an analogue computer to steer itself on a specially designed street. 

However, it wasn‘t until 1989 when ALVINN (Autonomous Land Vehicle in 
a Neural Network), a modified military ambulance, used neural networks to 
navigate by itself on roads. 

Since then, deep learning and autonomous vehicles have enjoyed a strong 
bond, with the former enhancing the latter‘s performance exponentially. 

Autonomous vehicles use cameras, sensors – LiDARs, RADARs, motion 
sensors – and external information such as geo-mapping to perceive their 
environment and collect relevant data. They use this equipment both individually 
and in tandem for documenting the data. 
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This data is then fed to deep learning algorithms that direct the vehicle to 
perform appropriate actions such as 

• accelerating, steering and braking 

• identifying or planning routes 

• traversing the traffic 

• detecting pedestrians and other vehicles at a distance as well as in proximity 

• recognising traffic signs 

Deep learning is playing a huge role in realizing the perceived motives of self- 
driving vehicles of reducing road accidents, helping the disabled drive, eliminating 
traffic jams, etc. 

And although still in nascent stages, the day is not far when we will see deep 
learning-powered vehicles form a majority of the road traffic. 

Fake News Detection 
 

The concept of spreading fake news to tip the scales in one‘s favour is not 
old. However, due to the explosive popularity of the internet, and social media 
platforms, in particular, fake news has become ubiquitous. 

Fake news, apart from misinforming the citizens, can be used to alter political 
campaigns, vilify certain situations and individuals, and commit other similar 
morally illegible acts. As such, curbing any and all fake news becomes a priority. 

Deep Learning proposes a way to deal with the menace of fake news by using 
complex language detection techniques to classify fraudulent news sources. This 
method essentially works by gathering information from trusty sources and 
juxtaposing them against a piece of news to verify its validity. 
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This paper explains how a combination of Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs) can validate digital news with 
high accuracy. 

Facial Recognition 

Facial Recognition is the technological method of identifying individuals from 
images and videos by documenting their faces. It uses advanced biometric technology 
to record a person‘s face and match it against a database to extract their identity. 

Facial Recognition is an old technology, first conceptualized in the 1960s. 
However, it is the integration of neural networks in facial recognition that 
exponentially increased its detection accuracy. 

Deep Learning enforced Facial Recognition works by recording face embeddings 
and using a trained model to map them against a huge database of millions of 
images. 

For instance, DeepFace is a facial recognition method that uses Deep Learning 
(hence the name) to identify persons with a recorded 97% accuracy rate. It uses 
a nine-layer neural network for its purpose and has been trained using four million 
images of about 4000 individuals. 

Recommendation Systems 

Have you ever stopped to think about how Spotify knows which genres you 
listen to or, how Netflix recommends shows that match your preferences exactly? 
The short answer is Deep Learning. And the long answer, well, it is still deep 
learning but with some added explanation. 

As discussed earlier, Deep Learning models process user data acquired from 
different sources and compile them to extract consumer info. This information then 
goes into deep learning-based recommender systems to generate appropriate 
suggestions for the users. 

Deep Learning empowered suggestions, although widely used by audio/video 
streaming services, are not just limited to them. Social media networks use similar 
systems to recommend relevant posts, videos, accounts and more to users in their 
feeds. 

Smart Agriculture 

Artificial Intelligence and its subsets are fortifying a lot of industries and 
sectors, and agriculture is no different. 

Of late, smart farming has become an active agricultural movement to improve 
upon the various aspects of traditional agriculture. Farmers are now using IoT 
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devices, satellite-based soil-composition detection, GPS, remote sensing, etc., to 
monitor and enhance their farming methods. 

Deep Learning algorithms capture and analyse agriculture data from the above 
sources to improve crop health and soil health, predict the weather, detect diseases, 
etc. 

Deep learning also finds uses in the field of crop genomics. Experts use neural 
networks to determine the genetic makeup of different crop plants and use it for 
purposes like 

• increasing resilience to natural phenomena and diseases 

• increase crop yield per unit area 

• breeding high-quality hybrids 

Space Travel 

For most of us, space travel is something we associate with the most advanced 
technology available to humankind. We think of humanoid robots, hyper-intelligent 
AIs, hi-tech equipment, etc., working relentlessly in space to assist the astronauts 
in their painstaking endeavours. 

However, while most of this stuff is over-the-top, it does signal one aspect 
of space flight – that it is technologically demanding. 

Scientists and engineers need to implement the latest and most efficient 
technologies – both hardware and software – to ensure the safety, integrity and 
success of space missions. 

Thus, it goes without saying that AI, Machine Learning and Deep Learning 
are crucial components of everything astronomy. 

For instance, ESA states that Deep Learning can be (and is, to some extent) 
used in 

• automating the landing of rockets 

• building space flight systems that can make intelligent decisions without 
human intervention 

Also, deep learning will play an active role in helping future rovers on Mars 
to navigate and deduce their surroundings better and more independently. 
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We will see how to implement MP neuron model using python. The data set 

we will be using is breast cancer data set from sklearn. Before start building the 
MP Neuron Model. We will start by loading the data and separating the response 
and target variables. 

Once we load the data, we can use the sklearn‘s train_test_split function to 
split the data into two parts — training and testing in the ratio of 80:20. 

MP Neuron PreProcessing Steps 

Remember from our previous discussion, MP Neuron takes only binary values 
as the input. So we need to convert the continuous features into binary format. 

To achieve this, we will use pandas.cut function to split all the features into 
0 or 1 in one single shot. Once we are ready with the inputs we need to build 
the model, train it on the training data and evaluate the model performance on 
the test data. 

To create a MP Neuron Model we will create a class and inside this class, 
we will have three different functions: 

• model function — to calculate the summation of the Binarized inputs. 

• predict function — to predict the outcome for every observation in the data. 

• fit function — the fit function iterates over all the possible values of the 
threshold b and find the best value of b, such that the loss will be minimum. 
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MP Neuron Model and Evaluation 

After building the model, test the model performance on the testing data and 
check the training data accuracy as well as the testing data accuracy. 

 
 

 
 

The McCulloch-Pitts neural model, which was the earliest ANN model, has 
only two types of inputs — Excitatory and Inhibitory. 

The excitatory inputs have weights of positive magnitude and the inhibitory 
weights have weights of negative magnitude. 

The inputs of the McCulloch-Pitts neuron could be either 0 or 1. It has a 
threshold function as an activation function. So, the output signal yout is 1 if the 
input ysum is greater than or equal to a given threshold value, else 0. The diagrammatic 
representation of the model is as follows: 

McCulloch-Pitts Model 

Simple McCulloch-Pitts neurons can be used to design logical operations. For 
that purpose, the connection weights need to be correctly decided along with the 
threshold function (rather than the threshold value of the activation function). For 
better understanding purpose, let me consider an example: 

John carries an umbrella if it is sunny or if it is raining. There are four given 
situations. I need to decide when John will carry the umbrella. The situations are 
as follows: 

• First scenario: It is not raining, nor it is sunny 

• Second scenario: It is not raining, but it is sunny 
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• Third scenario: It is raining, and it is not sunny 

• Fourth scenario: It is raining as well as it is sunny 

To analyse the situations using the McCulloch-Pitts neural model, I can 
consider the input signals as follows: 

• X1: Is it raining? 

• X2 : Is it sunny? 

So, the value of both scenarios can be either 0 or 1. We can use the value 
of both weights X1 and X2 as 1 and a threshold function as 1. So, the neural network 
model will look like: 

Truth Table for this case will be: 
 

Situation x
1

 x
2 

y
sum 

y
out 

1 0 0 0 0 

2 0 1 1 1 

3 1 0 1 1 

4 1 1 2 1 

The truth table built with respect to the problem is depicted above. From the 
truth table, I can conclude that in the situations where the value of yout is 1, John 
needs to carry an umbrella. Hence, he will need to carry an umbrella in scenarios 
2, 3 and 4. 

Rosenblatt’s Perceptron 

Rosenblatt‘s perceptron is built around the McCulloch-Pitts neural model. The 
diagrammatic representation is as follows: 
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So, any point (x,1x2) which lies above the decision boundary, as depicted by 
the graph, will be assigned to class c1 and the points which lie below the boundary 
are assigned to class c2. 

Thus, we see that for a data set with linearly separable classes, perceptrons 
can always be employed to solve classification problems using decision lines (for 2-
dimensional space), decision planes (for 3-dimensional space) or decision 
hyperplanes (for n-dimensional space). Appropriate values of the synaptic weights 
can be obtained by training a perceptron. However, one assumption for perceptron 
to work properly is that the two classes should be linearly separable i.e. the classes 
should be sufficiently separated from each other. Otherwise, if the classes are non- 
linearly separable, then the classification problem cannot be solved by perceptron. 
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Linear Vs Non-Linearly Separable Classes 

Multi-layer perceptron: A basic perceptron works very successfully for data 
sets which possess linearly separable patterns. However, in practical situations, 
that is an ideal situation to have. This was exactly the point driven by Minsky 
and Papert in their work in 1969. They showed that a basic perceptron is not able 
to learn to compute even a simple 2 bit XOR. So, let us understand the reason. 
Consider a truth table highlighting output of a 2 bit XOR function: 

 

x
1

 x
2

 x
1 

XOR x
2

 Class 

1 1 0 c2 

1 0 1 c1 

0 1 1 c1 

0 0 0 c2 

 The data is not linearly separable. Only a curved decision boundary can 
separate the classes properly. To address this issue, the other option is to use two 
decision boundary lines in place of one. 
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Classification with two decision lines in the XOR function output 

This is the philosophy used to design the multi-layer perceptron model. The 
major highlights of this model are as follows: 

• The neural network contains one or more intermediate layers between the 
input and output nodes, which are hidden from both input and output nodes 

• Each neuron in the network includes a non-linear activation function that 
is differentiable. 

• The neurons in each layer are connected with some or all the neurons in 
the previous layer. 

ADALINE Network Model 

Adaptive Linear Neural Element (ADALINE) is an early single-layer ANN 
developed by Professor Bernard Widrow of Stanford University. As depicted in 
the below diagram, it has only output neurons. 

The output value can be +1 or -1. A bias input x0 (where x0 =1) having a weight 
w0 is added. The activation function is such that if weighted sum is positive or 
0, the output is 1, else it is -1. Formally I can say that. The supervised learning 
algorithm adopted by ADALINE network is known as Least Mean Square (LMS) 

or DELTA Rule. A network combining a number of ADALINE is termed as 
MADALINE (many ADALINE). MEADALINE networks can be used to solve 
problems related to non-linear separability. 

 
 

  
 

Activation functions play a crucial role in neural networks by introducing non- 
linearity into the model, enabling it to learn and model complex patterns in the 
data. They determine whether a neuron should be activated or not, thus influencing 
the output of the neural network. 
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ACTIVATION FUNCTION 

It’s just a thing function that you use to get the output of node. It is also known 

as Transfer Function. 

Activation functions with Neural Networks 

It is used to determine the output of neural network like yes or no. It maps 
the resulting values in between 0 to 1 or -1 to 1 etc. (depending upon the function). 
The Activation Functions can be basically divided into 2 types- 

1. Linear Activation Function 

2. Non-linear Activation Functions 

Linear or Identity Activation Function 

As you can see the function is a line or linear. Therefore, the output of the 
functions will not be confined between any range. 

 

Fig: Linear Activation Function 
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Equation : f(x) = x 

Range : (-infinity to infinity) 

It doesn‘t help with the complexity or various parameters of usual data that 
is fed to the neural networks. 

Non-linear Activation Function 

The Nonlinear Activation Functions are the most used activation functions. 
Nonlinearity helps to makes the graph look something like this 

Fig: Non-linear Activation Function 

It makes it easy for the model to generalize or adapt with variety of data and 
to differentiate between the output. 

The main terminologies needed to understand for nonlinear functions 
are: 

Derivative or Differential 

Change in y-axis w.r.t. change in x-axis.It is also known as slope. 

Monotonic function 

A function which is either entirely non-increasing or non-decreasing. 

The Nonlinear Activation Functions are mainly divided on the basis of their 
range or curves- 
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Sigmoid or Logistic Activation Function 

The Sigmoid Function curve looks like a S-shape. 
 

Fig: Sigmoid Function 

The main reason why we use sigmoid function is because it exists between 
(0 to 1). Therefore, it is especially used for models where we have to predict the 

probability as an output.Since probability of anything exists only between the 
range of 0 and 1, sigmoid is the right choice. 

The function is differentiable.That means, we can find the slope of the 
sigmoid curve at any two points. 

The function is monotonic but function‘s derivative is not. 

The logistic sigmoid function can cause a neural network to get stuck at the 
training time. 

The softmax function is a more generalized logistic activation function which 
is used for multiclass classification. 

Tanh or hyperbolic tangent Activation Function 

tanh is also like logistic sigmoid but better. The range of the tanh function 
is from (-1 to 1). tanh is also sigmoidal (s - shaped). 

The advantage is that the negative inputs will be mapped strongly negative 
and the zero inputs will be mapped near zero in the tanh graph. 
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Fig: tanh v/s Logistic Sigmoid 

The function is differentiable. 

The function is monotonic while its derivative is not monotonic. 

The tanh function is mainly used classification between two classes. 

Both tanh and logistic sigmoid activation functions are used in feed-forward 
nets. 

ReLU (Rectified Linear Unit) Activation Function 

The ReLU is the most used activation function in the world right now.Since, 
it is used in almost all the convolutional neural networks or deep learning. 

As you can see, the ReLU is half rectified (from bottom). f(z) is zero when 
z is less than zero and f(z) is equal to z when z is above or equal to zero. 

Range: [ 0 to infinity) 

The function and its derivative both are monotonic. 

But the issue is that all the negative values become zero immediately which 
decreases the ability of the model to fit or train from the data properly. That means 
any negative input given to the ReLU activation function turns the value into zero 
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immediately in the graph, which in turns affects the resulting graph by not mapping 
the negative values appropriately. 

 

 

 

Leaky ReLU 

Fig: ReLU v/s Logistic Sigmoid 

It is an attempt to solve the dying ReLU problem 

Can you see the Leak? = 

The leak helps to increase the range of the ReLU function. Usually, the value 
of a is 0.01 or so. 

When a is not 0.01 then it is called Randomized ReLU. 

Therefore the range of the Leaky ReLU is (-infinity to infinity). 

Both Leaky and Randomized ReLU functions are monotonic in nature. Also, 
their derivatives also monotonic in nature. 
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Fig : ReLU v/s Leaky ReLU 

Why derivative/differentiation is used ? 

When updating the curve, to know in which direction and how much to 
change or update the curve depending upon the slope.That is why we use 
differentiation in almost every part of Machine Learning and Deep Learning. 

Fig: Activation Function Cheetsheet 
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Fig: Derivative of Activation Functions 

 
 

 
 

There are different types of neural networks but they always consist of the 
same components: neurons, synapses, weights, biases, and functions. 

Neurons 

A neuron or a node is a basic unit of neural networks that receives information, 
performs simple calculations, and passes it further. 

All neurons in a net are divided into three groups: • Input neurons that receive information from the outside world; • Hidden neurons that process that information; • Output neurons that produce a conclusion. 
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In a large neural network with many neurons and connections between them, 
neurons are organized in layers. There is an input layer that receives information, 
a number of hidden layers, and the output layer that provides valuable results. 
Every neuron performs transformation on the input information. Neurons only 
operate numbers in the range [0,1] or [-1,1]. In order to turn data into something 
that a neuron can work with, we need normalization. We talked about what it is 
in the post about regression analysis. 

Synapses and weights 

A synapse is what connects the neurons like an electricity cable. Every synapse 
has a weight. The weights also add to the changes in the input information. The 
results of the neuron with the greater weight will be dominant in the next neuron, 
while information from less ‗weighty‘ neurons will not be passed over. One can 
say that the matrix of weights governs the whole neural system. 

How do you know which neuron has the biggest weight? During the initialization 
(first launch of the NN), the weights are randomly assigned but then you will have 
to optimize them. 
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Bias 

A bias neuron allows for more variations of weights to be stored. Biases add 
richer representation of the input space to the model‘s weights. 

In the case of neural networks, a bias neuron is added to every layer. It plays 
a vital role by making it possible to move the activation function to the left or 
right on the graph. 

It is true that ANNs can work without bias neurons. However, they are almost 
always added and counted as an indispensable part of the overall model. 

How ANNs work 

Every neuron processes input data to extract a feature. Let‘s imagine that we 
have three features and three neurons, each of which is connected with all these 
features. 

Each of the neurons has its own weights that are used to weight the features. 

During the training of the network, you need to select such weights for each 
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of the neurons that the output provided by the whole network would be true-to- 
life. 

To perform transformations and get an output, every neuron has an activation 
function. This combination of functions performs a transformation that is described 
by a common function F — this describes the formula behind the NN‘s magic. 

There are a lot of activation functions. The most common ones are linear, 
sigmoid, and hyperbolic tangent. Their main difference is the range of values they 
work with. 

How do you train an algorithm? 

Neural networks are trained like any other algorithm. You want to get some 
results and provide information to the network to learn from. For example, we 
want our neural network to distinguish between photos of cats and dogs and 
provide plenty of examples. 

Delta is the difference between the data and the output of the neural network. 
We use calculus magic and repeatedly optimize the weights of the network until 
the delta is zero. Once the delta is zero or close to it, our model is correctly able 
to predict our example data. 

Iteration 

This is a kind of counter that increases every time the neural network goes 
through one training set. In other words, this is the total number of training sets 
completed by the neural network. 



Python Implementation of Neuron Model 241 
 

 

 

Epoch 

The epoch increases each time we go through the entire set of training sets. 
The more epochs there are, the better is the training of the model. 

Batch 

Batch size is equal to the number of training examples in one forward/ 
backward pass. The higher the batch size, the more memory space you‘ll need. 

What is the difference between an iteration and an epoch? 

• one epoch is one forward pass and one backward pass of all the 

training examples; • number of iterations is a number of passes, each pass using [batch 

size] number of examples. To be clear, one pass equals one forward 

pass + one backward pass (we do not count the forward pass and 

backward pass as two different passes). 

And what about errors? 

Error is a deviation that reflects the discrepancy between expected and received 
output. The error should become smaller after every epoch. If this does not happen, 
then you are doing something wrong. 

The error can be calculated in different ways, but we will consider only two 
main ways: Arctan and Mean Squared Error. 
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What kinds of neural networks exist? 

There are so many different neural networks out there that it is simply impossible 
to mention them all. If you want to learn more about this variety, visit the neural 
network zoo where you can see them all represented graphically. 

Feed-forward neural networks 

This is the simplest neural network algorithm. A feed-forward network doesn‘t 
have any memory. That is, there is no going back in a feed-forward network. 

In many tasks, this approach is not very applicable. For example, when we 
work with text, the words form a certain sequence, and we want the machine to 
understand it. 

Feedforward neural networks can be applied in supervised learning when the 
data that you work with is not sequential or time-dependent. You can also use it 
if you don‘t know how the output should be structured but want to build a relatively 
fast and easy NN. 

Recurrent neural networks 

A recurrent neural network can process texts, videos, or sets of images and 
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become more precise every time because it remembers the results of the previous 
iteration and can use that information to make better decisions. 

Recurrent neural networks are widely used in natural language processing and 
speech recognition. 

Convolutional neural networks 

Convolutional neural networks are the standard of today‘s deep machine 
learning and are used to solve the majority of problems. Convolutional neural 
networks can be either feed-forward or recurrent. 

Let‘s see how they work. Imagine we have an image of Albert Einstein. We 
can assign a neuron to all pixels in the input image. 

But there is a big problem here: if you connect each neuron to all pixels, then, 
firstly, you will get a lot of weights. Hence, it will be a very computationally 
intensive operation and take a very long time. Then, there will be so many weights 
that this method will be very unstable to overfitting. It will predict everything well 
on the training example but work badly on other images. 

Therefore, programmers came up with a different architecture where each of 
the neurons is connected only to a small square in the image. All these neurons 
will have the same weights, and this design is called image convolution. We can 
say that we have transformed the picture, walked through it with a filter simplifying 
the process. Fewer weights, faster to count, less prone to overfitting. 
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For an awesome explanation of how convolutional neural networks work. 

Generative adversarial neural networks 
 

GANs are used, for example, to generate photographs that are perceived by 
the human eye as natural images or deepfakes. 

A generative adversarial network is an unsupervised machine learning algorithm 
that is a combination of two neural networks, one of which (network G) generates 
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patterns and the other (network A) tries to distinguish genuine samples from the 
fake ones. Since networks have opposite goals – to create samples and reject 
samples – they start an antagonistic game that turns out to be quite effective. 

What kind of problems do NNs solve? 

Neural networks are used to solve complex problems that require analytical 
calculations similar to those of the human brain. The most common uses for neural 
networks are: 

• Classification. NNs label the data into classes by implicitly analyzing 

its parameters. For example, a neural network can analyse the 

parameters of a bank client such as age, solvency, credit history and 

decide whether to loan them money. 

• Prediction. The algorithm has the ability to make predictions. For 

example, it can foresee the rise or fall of a stock based on the 

situation in the stock market. 

• Recognition. This is currently the widest application of neural 

networks. For example, a security system can use face recognition 

to only let authorized people into the building. 

Deep learning and neural networks are useful technologies that expand human 
intelligence and skills. Neural networks are just one type of deep learning 
architecture. However, they have become widely known because NNs can effectively 
solve a huge variety of tasks and cope with them better than other algorithms. 
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Sigmoid Neurons Function 

  in Deep Learning  
 

 

 
 
 

  
 

So now we have a more sophisticatedly structured neural network with hidden 
layers. But we haven‘t solved the activation problem with the step function. 

In the last post, we talked about the limitations of the linearity of step function. 
One thing to remember is: If the activation function is linear, then you can stack 

as many hidden layers in the neural network as you wish, and the final output 

is still a linear combination of the original input data. Please make sure you 

read this link for an explanation if the concept is difficult to follow. This linearity 
means that it cannot really grasp the complexity of non-linear problems like XOR 
logic or patterns separated by curves or circles. 

 

Meanwhile, step function also has no useful derivative (its derivative is 0 
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everywhere or undefined at the 0 point on x-axis). It doesn‘t work for 
backpropagation, which we will definitely talk about in the next post! 

Graph 7: Step Function 

Well, here‘s another problem: Perceptron with step function isn‘t very ―stable‖ 
as a ―relationship candidate‖ for neural networks. Think about it: this girl (or boy) 
has got some serious bipolar issues! One day (for z < 0), (s)he‘s all ―quiet‖ and 
―down‖, giving you zero response. Then another day (for z e” 0), (s)he‘s suddenly 
―talkative‖ and ―lively‖, speaking to you nonstop. Heck of a drastic change! 
There‘s no transition for her/his mood, and you don‘t know when it‘s going down 
or up. Yeah…that‘s step function. 

Graph 8: We Want Gradual Change in Weights to Gradually Change Outputs 

So basically, a small change in any weight in the input layer of our perceptron 
network could possibly lead to one neuron to suddenly flip from 0 to 1, which 
could again affect the hidden layer‘s behavior, and then affect the final outcome. 
Like we said already, we want a learning algorithm that could improve our neural 
network by gradually changing the weights, not by flat-no-response or sudden 
jumps. If we can‘t use step function to gradually change the weights, then it 
shouldn‘t be the choice. 

Say goodbye to perceptron with step function now. We are finding a new 
partner for our neural network, the sigmoid neuron, which comes with sigmoid 
function (duh). But no worries: The only thing that will change is the activation 
function, and everything else we‘ve learned so far about neural networks still 
works for this new type of neuron! 
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Sigmoid Function 
 
 
 

Graph 9: Sigmoid Function using Matplotlib 

If the function looks very abstract or strange to you, don‘t worry too much 
about the details like Euler‘s number e or how someone came up with this crazy 
function in the first place. For those who aren‘t math-savvy, the only important 
thing about sigmoid function in Graph 9 is first, its curve, and second, its 
derivative. Here are some more details: 

1. Sigmoid function produces similar results to step function in that the 
output is between 0 and 1. The curve crosses 0.5 at z=0, which we can 
set up rules for the activation function, such as: If the sigmoid neuron‘s 
output is larger than or equal to 0.5, it outputs 1; if the output is smaller 
than 0.5, it outputs 0. 

2. Sigmoid function does not have a jerk on its curve. It is smooth and it has 
a very nice and simple derivative of (z) * (1- (z)), which is differentiable 
everywhere on the curve. The calculus derivation of the derivative can be 
found on Stack Overflow here if you want to see it. But you don‘t have 
to know how to derive it. No stress here. 
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3. If z is very negative, then the output is approximately 0; if z is very positive, 
the output is approximately 1; but around z=0 where z is neither too large 
or too small (in between the two outer vertical dotted grid lines in Graph 

9), we have relatively more deviation as z changes. 

Now that seems like a dating material for our neural network :) Sigmoid 
function, unlike step function, introduces non-linearity into our neural network 
model. Non-linear just means that the output we get from the neuron, which is 
the dot product of some inputs x (x1, x2, …, xm) and weights w (w1, w2, …,wm) 
plus bias and then put into a sigmoid function, cannot be represented by a linear 
combination of the input x (x1, x2, …,xm). 

This non-linear activation function, when used by each neuron in a multi-layer 
neural network, produces a new ―representation‖ of the original data, and ultimately 
allows for non-linear decision boundary, such as XOR. So in the case of XOR, 
if we add two sigmoid neurons in a hidden layer, we could, in another space, 
reshape the original 2D graph into something like the 3D image in the left side 
of Graph 10 below. This ridge thus allows for classification of the XOR gate and 
it represents the light yellowish region of the 2D XOR gate in the right side of 
Graph 10. So if our output value is on the higher area of the ridge, then it should 
be a true or 1 (like the weather is cold but not hot, or the weather is hot but not 
cold); if our output value is on the lower flat area on the two corners, then it‘s 
false or 0 since it‘s not right to say the weather is both hot and cold or neither 
hot or cold (ok, I guess the weather could be neither hot or cold…you get what 
I mean though…right?). 
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Graph 10. Representation of Neural Networks with Hidden Layers to Classify 
XOR Gate. 

I know these talks on non-linearity can be confusing, so please read more about 
linearity & non-linearity here (intuitive post with animation from a great blog by 
Christopher Olah), here (by 

Problem solved……for now ;) We will see some different types of activation 
function in the near future because sigmoid function has its own issues, too! Some 
popular ones include tanh and ReLU. That, however, is for another post. 

 
 

 
 

Whether you implement a neural network yourself or you use a built in library 
for neural network learning, it is of paramount importance to understand the 
significance of a sigmoid function. The sigmoid function is the key to understanding 
how a neural network learns complex problems. This function also served as a 
basis for discovering other functions that lead to efficient and good solutions for 
supervised learning in deep learning architectures. 

In this chapter, you will discover the sigmoid function and its role in learning 
from examples in neural networks. 

A Gentle Introduction to sigmoid function. Photo by Mehreen Saeed, some 
rights reserved. 

SIGMOID FUNCTION 

The sigmoid function is a special form of the logistic function and is usually 

denoted by (x) or sig(x). It is given by: 

(x) = 1/(1+exp(-x)) 
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PROPERTIES AND IDENTITIES OF SIGMOID FUNCTION 

The graph of sigmoid function is an S-shaped curve as shown by the green 
line in the graph below. The figure also shows the graph of the derivative in pink 
color. The expression for the derivative, along with some important properties are 
shown on the right. 

 

Graph of the sigmoid function and its derivative. Some important properties 
are also shown. 

A few other properties include: 

1. Domain: (-‖, +‖) 
2. Range: (0, +1) 

3. (0) = 0.5 
4. The function is monotonically increasing. 

5. The function is continuous everywhere. 

6. The function is differentiable everywhere in its domain. 

7. Numerically, it is enough to compute this function‘s value over a small 
range of numbers, e.g., [-10, +10]. For values less than -10, the function‘s 
value is almost zero. For values greater than 10, the function‘s values are 
almost one. 

THE SIGMOID AS A SQUASHING FUNCTION 

The sigmoid function is also called a squashing function as its domain is the 
set of all real numbers, and its range is (0, 1). Hence, if the input to the function 
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is either a very large negative number or a very large positive number, the output 
is always between 0 and 1. Same goes for any number between -‖ and +‖. 

Sigmoid As An Activation Function In Neural Networks 

The sigmoid function is used as an activation function in neural networks. Just 
to review what is an activation function, the figure below shows the role of an 
activation function in one layer of a neural network. A weighted sum of inputs 
is passed through an activation function and this output serves as an input to the 
next layer. 

When the activation function for a neuron is a sigmoid function it is a 
guarantee that the output of this unit will always be between 0 and 1. Also, as 
the sigmoid is a non-linear function, the output of this unit would be a non-linear 
function of the weighted sum of inputs. Such a neuron that employs a sigmoid 
function as an activation function is termed as a sigmoid unit. 

Linear Vs. Non-Linear Separability? 

Suppose we have a typical classification problem, where we have a set of 
points in space and each point is assigned a class label. If a straight line (or a 
hyperplane in an n-dimensional space) can divide the two classes, then we have 
a linearly separable problem. On the other hand, if a straight line is not enough 
to divide the two classes, then we have a non-linearly separable problem. The 
figure below shows data in the 2 dimensional space. Each point is assigned a red 
or blue class label. The left figure shows a linearly separable problem that requires 
a linear boundary to distinguish between the two classes. The right figure shows 
a non-linearly separable problem, where a non-linear decision boundary is required. 

For three dimensional space, a linear decision boundary can be described via 
the equation of a plane. For an n-dimensional space, the linear decision boundary 
is described by the equation of a hyperplane. 

Why The Sigmoid Function Is Important In Neural Networks? 

If we use a linear activation function in a neural network, then this model can 
only learn linearly separable problems. However, with the addition of just one 
hidden layer and a sigmoid activation function in the hidden layer, the neural 
network can easily learn a non-linearly separable problem. Using a non-linear 
function produces non-linear boundaries and hence, the sigmoid function can be 
used in neural networks for learning complex decision functions. 

The only non-linear function that can be used as an activation function in a 
neural network is one which is monotonically increasing. So for example, sin(x) 
or cos(x) cannot be used as activation functions. Also, the activation function 
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should be defined everywhere and should be continuous everywhere in the space 
of real numbers. The function is also required to be differentiable over the entire 
space of real numbers. 

Typically a back propagation algorithm uses gradient descent to learn the 
weights of a neural network. To derive this algorithm, the derivative of the 
activation function is required. 

The fact that the sigmoid function is monotonic, continuous and differentiable 
everywhere, coupled with the property that its derivative can be expressed in terms 
of itself, makes it easy to derive the update equations for learning the weights in 
a neural network when using back propagation algorithm. 

 
 

   
 

 
 

Alright. So we‘ve introduced hidden layers in a neural network and replaced 
perceptron with sigmoid neurons. We also introduced the idea that non-linear 
activation function allows for classifying non-linear decision boundaries or patterns 
in our data. You can memorize these takeaways since they‘re facts, but I encourage 
you to google a bit on the internet and see if you can understand the concept better 
(it is natural that we take some time to understand these concepts). Now, we‘ve 
never talked about one very important point: Why on earth do we want hidden 
layers in neural networks in the first place? How do hidden layers magically help 
us to tackle complicated problems that single-layer neurons cannot do? 

From the XOR example above, you‘ve seen that adding two hidden neurons 
in 1 hidden layer could reshape our problem into a different space, which magically 
created a way for us to classify XOR with a ridge. So hidden layers somehow 
twist the problem in a way that makes it easy for the neural network to classify 
the problem or pattern. Now we‘ll use a classic textbook example: Recognition 
of hand-written digits, to help you intuitively understand what hidden layers do. 

Graph 11. MNIST dataset of Hand-written Digits. 

The digits in Graph 11 belong to a dataset called MNIST. It contains 70,000 
examples of digits written by human hands. Each of these digits is a picture of 
28x28 pixels. So in total each image of a digit has 28*28=784 pixels. Each pixel 
takes a value beween 0 and 255 (RGB color code). 0 means the color is white 
and 255 means the color black. 
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Graph 12. MNIST digit 5, which consist of 28x28 pixel values between 0 and 

255. 

Now, the computer can‘t really ―see‖ a digit like we humans do, but if we 
dissect the image into an array of 784 numbers like [0, 0, 180, 16, 230, …, 4, 
77, 0, 0, 0], then we can feed this array into our neural network. The computer 
can‘t understand an image by ―seeing‖ it, but it can understand and analyze the 
pixel numbers that represent an image. 

So, let‘s set up a neural network like above in Graph 13. It has 784 input 
neurons for 28x28 pixel values. Let‘s assume it has 16 hidden neurons and 10 
output neurons. The 10 output neurons, returned to us in an array, will each be 
in charge to classify a digit from 0 to 9. So if the neural network thinks the 
handwritten digit is a zero, then we should get an output array of [1, 0, 0, 0, 0, 
0, 0, 0, 0, 0], the first output in this array that senses the digit to be a zero is ―fired‖ 
to be 1 by our neural network, and the rest are 0. If the neural network thinks 
the handwritten digit is a 5, then we should get [0, 0, 0, 0, 0, 1, 0, 0, 0, 0]. The 
6th element that is in charge to classify a five is triggered while the rest are not. 
So on and so forth. 
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Graph 13: Multi-Layer Sigmoid Neural Network with 784 input neurons, 16 
hidden neurons, and 10 output neurons 

Remember we mentioned that neural networks become better by repetitively 
training themselves on data so that they can adjust the weights in each layer of 
the network to get the final results/actual output closer to the desired output? So 
when we actually train this neural network with all the training examples in 
MNIST dataset, we don‘t know what weights we should assign to each of the 
layers. So we just randomly ask the computer to assign weights in each layer. (We 
don‘t want all the weights to be 0, which I‘ll explain in the next post if space 
allows). 

This concept of randomly initializing weights is important because each time 
you train a deep learning neural network, you are initializing different numbers 
to the weights. So essentially, you and I have no clue what‘s going on in the neural 
network until after the network is trained. A trained neural network has weights 
which are optimized at certain values that make the best prediction or classification 
on our problem. It‘s a black box, literally. And each time the trained network will 
have different sets of weights. For the sake of argument, let‘s imagine the following 
case in Graph 14, which I borrow from Michael Nielsen‘s online book: 

Graph 14. An Intuitive Example to Understand Hidden Layers 

After training the neural network with rounds and rounds of labeled data in 
supervised learning, assume the first 4 hidden neurons learned to recognize the 
patterns above in the left side of Graph 14. Then, if we feed the neural network 
an array of a handwritten digit zero, the network should correctly trigger the top 
4 hidden neurons in the hidden layer while the other hidden neurons are silent, 
and then again trigger the first output neuron while the rest are silent. 
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Graph 15. Neural Networks are Black Boxes. Each Time is Different. 

If you train the neural network with a new set of randomized weights, it might 
produce the following network instead (compare Graph 15 with Graph 14), 
since the weights are randomized and we never know which one will learn which 
or what pattern. But the network, if properly trained, should still trigger the correct 
hidden neurons and then the correct output. 

One last thing to mention: In a multi-layer neural network, the first hidden 
layer will be able to learn some very simple patterns. Each additional hidden layer 
will somehow be able to learn progressively more complicated patterns. Check 
out Graph 16 from Scientific American with an example of face ecognition :) 

 
 

 
 

SO WHY DO WE NEED ACTIVATION FUNCTIONS IN OUR 
NEURAL NETWORKS? 

Welcome to my first post! I am a Data Scientist and have been an active reader 
of Medium blogs. Now, I am planning to use Medium blog to document my 
journey in learning Deep Learning and share my experiences through the projects 
I have been working on. Hopefully, by sharing my views on the subjects I can 
also learn from the fantastic data science/deep learning community on Medium! 
I would love to hear your feedback on my first post here. With that said, let‘s get 
started … 

The basic idea of how a neural network learns is — We have some input data 
that we feed it into the network and then we perform a series of linear operations 
layer by layer and derive an output. In a simple case for a particular layer is that 



Sigmoid Neurons Function in Deep Learning 257 
 

 

 

we multiply the input by the weights, add a bias and apply an activation function 
and pass the output to the next layer. We keep repeating the process until we reach 
the last layer. The final value is our output. We then compute the error between 
the ―calculated output‖ and the ―true output‖ and then calculate the partial derivatives 
of this error with respect to the parameters in each layer going backwards and 
keep updating the parameters accordingly! 

Neural networks are said to be universal function approximators. The main 
underlying goal of a neural network is to learn complex non-linear functions. If 
we do not apply any non-linearity in our multi-layer neural network, we are simply 
trying to seperate the classes using a linear hyperplane. As we know, in the real- 
world nothing is linear! 

Also, imagine we perform simple linear operation as described above, namely; 
multiply the input by weights, add a bias and sum them across all the inputs 
arriving to the neuron. It is likely that in certain situations, the output derived 
above, takes a large value. When, this output is fed into the further layers, they 
can be transformed to even larger values, making things computationally 
uncontrollable. This is where the activation functions play a major role i.e. squashing 
a real-number to a fix interval (e.g. between -1 and 1). 

Let us see different types of activation functions and how they compare against 
each other: 

Sigmoid 
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The sigmoid activation function has the mathematical form ‗sig(z) = 1/ (1 + 
e^-z)‗. As we can see, it basically takes a real valued number as the input and 
squashes it between 0 and 1. It is often termed as a squashing function as well. 
It aims to introduce non-linearity in the input space. The non-linearity is where 
we get the wiggle and the network learns to capture complicated relationships. 
As we can see from the above mathematical representation, a large negative 
number passed through the sigmoid function becomes 0 and a large positive 
number becomes 1. Due to this property, sigmoid function often has a really nice 
interpretation associated with it as the firing rate of the neuron; from not firing 
at all (0) to fully-saturated firing at an assumed maximum frequency (1). However, 
sigmoid activation functions have become less popular over the period of time 
due to the following two major drawbacks: 

Killing gradients 

• Sigmoid neurons get saturated on the boundaries and hence the local 
gradients at these regions is almost zero. To give you a more intuitive 
example to understand this, consider the inputs to the sigmoid function 
to be +15 and -15. The derivative of sigmoid function is ‗sig(z) * (1 — 
sig(z))‗. As mentioned above, the large positive values are squashed near 
1 and large negative values are squashed near 0. Hence, effectively making 
the local gradient to near 0. As a result, during backpropagation, this 
gradient gets multiplied to the gradient of this neurons‘ output for the final 
objective function, hence it will effectively ―kill‖ the gradient and no 
signal will flow through the neuron to its weights. Also, we have to pay 
attention to initializing the weights of sigmoid neurons to avoid saturation, 
because, if the initial weights are too large, then most neurons will get 
saturated and hence the network will hardly learn. 

Non zero-centered outputs: 

• The output is always between 0 and 1, that means that the output after 
applying sigmoid is always positive hence, during gradient-descent, the 
gradient on the weights during backpropagation will always be either 
positive or negative depending on the output of the neuron. As a result, 
the gradient updates go too far in different directions which makes 
optimization harder. 

The python implementation looks something similar to: 
import numpy as npdef sigmoid(z): 

return 1 / (1 + np.exp(-z)) 
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Tanh 
 

 
The tanh or hyperbolic tangent activation function has the mathematical form 

‗tanh(z) = (e^z — e^-z) / (e^z + e^-z)‗. It is basically a shifted sigmoid neuron. 
It basically takes a real valued number and squashes it between -1 and +1. Similar 
to sigmoid neuron, it saturates at large positive and negative values. However, its 
output is always zero-centered which helps since the neurons in the later layers 
of the network would be receiving inputs that are zero-centered. Hence, in practice, 
tanh activation functions are preffered in hidden layers over sigmoid. 

import numpy as npdef tanh(z): 

return np.tanh(z) 

ReLU: 
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The ReLU or Rectified Linear Unit is represented as ‗ReLU(z) = max(0, z)‗. 
It basically thresholds the inputs at zero, i.e. all negative values in the input to 
the ReLU neuron are set to zero. Fairly recently, it has become popular as it was 
found that it greatly accelerates the convergence of stochastic gradient descent as 
compared to Sigmoid or Tanh activation functions. Just to give an intuition, the 
gradient is either 0 or 1 depending on the sign of the input. Let us discuss some 
of the advantages of ReLU: 

Sparsity of Activations: 

• As we studied above, ReLU and Tanh activation functions would almost 
always get fired in the neural network, resulting in the almost all the 
activations getting processed in calculating the final output of the network. 
Now surely this is a good thing but only if our network is small or we 
had unlimited computational power. Imagine we have a very deep neural 
network with a lot of neurons, we would ideally want only a section of 
neurons to fire and contribute to the final output of the network and hence, 
we want a section of the neurons in the network to be passive. ReLU gives 
us this benefit. Hence, due to the characteristics of ReLU, there is a 
possibility that 50% of neurons to give 0 activations and thus leading to 
fewer neurons to fire as a result of which the network becomes lighter and 
we can compute the output faster. 

However, it has a drawback in terms of a problem called as dying neurons. 

Dead Neurons: 

• ReLU units can be fragile during training and can ―die‖. That is, if the 
units are not activated initially, then during backpropagation zero gradients 
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flow through them. Hence, neurons that ―die‖ will stop responding to the 
variations in the output error because of which the parameters will never 
be updated/updated during backpropagation. However, there are concepts 
such as Leaky ReLU that can be used to overcome this problem. Also, 
having a proper setting of the learning rate can prevent causing the neurons 
to be dead. 

import numpy as npdef relu(z): 

return z * (z > 0) 

Leaky ReLU: 

The Leaky ReLU is just an extension of the traditional ReLU function. As 
we saw that for values less than 0, the gradient is 0 which results in ―Dead 
Neurons‖ in those regions. To address this problem, Leaky ReLU comes in handy. 

 
That is, instead of defining values less than 0 as 0, we instead define negative 

values as a small linear combination of the input. The small value commonly used 
is 0.01. It is represented as `LeakyReLU(z) = max(0.01 * z, z)`. The idea of Leaky 
ReLU can be extended even further by making a small change. Instead of multiplying 
`z` with a constant number, we can learn the multiplier and treat it as an additional 
hyperparameter in our process. This is known as Parametric ReLU. In practice, 
it is believed that this performs better than Leaky ReLU. 
import numpy as npdef leaky_relu(z): 

return np.maximum(0.01 * z, z) 
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IMPLEMENTATION USING PYTHON 

Having learned the types and significance of each activation function, it is 
also essential to implement some basic (non-linear) activation functions using 
python code and observe the output for more clear understanding of the concepts: 

Sigmoid Activation Function 

import matplotlib.pyplot as plt 

import numpy as np 
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def sigmoid(x): 

s=1/(1+np.exp(-x)) 

ds=s*(1-s) 

return s,ds 

x=np.arange(-6,6,0.01) 

sigmoid(x) 

fig, ax = plt.subplots(figsize=(9, 5)) 

ax.spines[„left‟].set_position(„center‟) 
ax.spines[„right‟].set_color(„none‟) 
ax.spines[„top‟].set_color(„none‟) 
ax.xaxis.set_ticks_position(„bottom‟) 
ax.yaxis.set_ticks_position(„left‟) 
ax.plot(x,sigmoid(x)[0], color=”#307EC7", linewidth=3, 
label=”sigmoid”) 
ax.plot(x,sigmoid(x)[1], color=”#9621E2", linewidth=3, 
label=”derivative”) 
ax.legend(loc=”upper right”, frameon=False) 

fig.show() 

Observations: 

• The sigmoid function has values between 0 to 1. 

• The output is not zero-centered. 

• Sigmoids saturate and kill gradients. 

• At the top and bottom level of sigmoid functions, the curve changes slowly, 
the derivative curve above shows that the slope or gradient it is zero. 
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Tanh Activation Function 

import matplotlib.pyplot as plt 

import numpy as np 

def tanh(x): 

t=(np.exp(x)-np.exp(-x))/(np.exp(x)+np.exp(-x)) 

dt=1-t**2 

return t,dt 

z=np.arange(-4,4,0.01) 

tanh(z)[0].size,tanh(z)[1].size 

fig, ax = plt.subplots(figsize=(9, 5)) 

ax.spines[„left‟].set_position(„center‟) 
ax.spines[„bottom‟].set_position(„center‟) 
ax.spines[„right‟].set_color(„none‟) 
ax.spines[„top‟].set_color(„none‟) 
ax.xaxis.set_ticks_position(„bottom‟) 
ax.yaxis.set_ticks_position(„left‟) 
ax.plot(z,tanh(z)[0], color=”#307EC7", linewidth=3, 
label=”tanh”) 
ax.plot(z,tanh(z)[1], color=”#9621E2", linewidth=3, 
label=”derivative”) 
ax.legend(loc=”upper right”, frameon=False) 

fig.show() 

Observations: 

• Its output is zero-centered because its range is between -1 to 1. i.e. -1 < 
output < 1. 

• Optimization is easier in this method hence in practice it is always preferred 
over the Sigmoid function. 

When all of this is said and done, the actual purpose of an activation function 
is to feature some reasonably non-linear property to the function, which could be 
a neural network. A neural network, without the activation functions, might perform 
solely linear mappings from the inputs to the outputs, and also the mathematical 
operation throughout the forward propagation would be the dot-products between 
an input vector and a weight matrix. 

Since one dot product could be a linear operation, sequent dot products would 
be nothing more than multiple linear operations repeated one after another. And 
sequent linear operations may be thought of as mutually single learn operations. 
To be able to work out extremely attention-grabbing stuff, the neural networks 
should be able to approximate the nonlinear relations from input features to the 
output labels. 
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The more complicated the information, the more non-linear the mapping of 
features to the bottom truth label will usually be. If there is no activation function 
in a neural network, the network would in turn not be able to understand such 
complicated mappings mathematically and wouldn‘t be able to solve tasks that 
the network is really meant to resolve. 

 
 

  
 

The different kinds of activation functions include: 

Linear Activation Functions 

A linear function is also known as a straight-line function where the activation 
is proportional to the input i.e. the weighted sum from neurons. It has a simple 
function with the equation: 

f(x) = ax + c 

The problem with this activation is that it cannot be defined in a specific range. 
Applying this function in all the nodes makes the activation function work like 
linear regression. The final layer of the Neural Network will be working as a linear 
function of the first layer. Another issue is the gradient descent when differentiation 
is done, it has a constant output which is not good because during backpropagation 
the rate of change of error is constant that can ruin the output and the logic of 
backpropagation. 

Non-Linear Activation Functions 

The non-linear functions are known to be the most used activation functions. 
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It makes it easy for a neural network model to adapt with a variety of data and 
to differentiate between the outcomes. 

These functions are mainly divided basis on their range or curves: 

Sigmoid Activation Functions 

Sigmoid takes a real value as the input and outputs another value between 
0 and 1. The sigmoid activation function translates the input ranged in (-‖,‖) to 
the range in (0,1) 

Tanh Activation Functions 

The tanh function is just another possible function that can be used as a non- 
linear activation function between layers of a neural network. It shares a few things 
in common with the sigmoid activation function. Unlike a sigmoid function that 
will map input values between 0 and 1, the Tanh will map values between -1 and 
1. Similar to the sigmoid function, one of the interesting properties of the tanh 
function is that the derivative of tanh can be expressed in terms of the function 
itself. 

ReLU Activation Functions 

The formula is deceptively simple: max(0,z). Despite its name, Rectified 
Linear Units, it‘s not linear and provides the same benefits as Sigmoid but with 
better performance. 

Leaky Relu 

Leaky Relu is a variant of ReLU. Instead of being 0 when z<0, a leaky ReLU 

allows a small, non-zero, constant gradient (normally, =0.01). However, the 
consistency of the benefit across tasks is presently unclear. Leaky ReLUs attempt 
to fix the ―dying ReLU‖ problem. 

Parametric Relu 

PReLU gives the neurons the ability to choose what slope is best in the 
negative region. They can become ReLU or leaky ReLU with certain values of 

. 

Maxout 

The Maxout activation is a generalization of the ReLU and the leaky ReLU 
functions. It is a piecewise linear function that returns the maximum of inputs, 
designed to be used in conjunction with the dropout regularization technique. Both 
ReLU and leaky ReLU are special cases of Maxout. The Maxout neuron, therefore, 
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enjoys all the benefits of a ReLU unit and does not have any drawbacks like dying 
ReLU. However, it doubles the total number of parameters for each neuron, and 
hence, a higher total number of parameters need to be trained. 

ELU 

The Exponential Linear Unit or ELU is a function that tends to converge faster 
and produce more accurate results. Unlike other activation functions, ELU has an 
extra alpha constant which should be a positive number. ELU is very similar to 
ReLU except for negative inputs. They are both in the identity function form for 
non-negative inputs. On the other hand, ELU becomes smooth slowly until its 

output equal to -  whereas ReLU sharply smoothes. 

Softmax Activation Functions 

Softmax function calculates the probabilities distribution of the event over ‗n‘ 
different events. In a general way, this function will calculate the probabilities of 
each target class over all possible target classes. Later the calculated probabilities 
will help determine the target class for the given inputs. 

When to use which Activation Function in a Neural Network? 

Specifically, it depends on the problem type and the value range of the 
expected output. For example, to predict values that are larger than 1, tanh or 
sigmoid are not suitable to be used in the output layer, instead, ReLU can be used. 

On the other hand, if the output values have to be in the range (0,1) or (-1, 
1) then ReLU is not a good choice, and sigmoid or tanh can be used here. While 
performing a classification task and using the neural network to predict a probability 
distribution over the mutually exclusive class labels, the softmax activation function 
should be used in the last layer. However, regarding the hidden layers, as a rule 
of thumb, use ReLU as an activation for these layers. 

In the case of a binary classifier, the Sigmoid activation function should be 
used. The sigmoid activation function and the tanh activation function work 
terribly for the hidden layer. For hidden layers, ReLU or its better version leaky 
ReLU should be used. For a multiclass classifier, Softmax is the best-used activation 
function. Though there are more activation functions known, these are known to 
be the most used activation functions. 

 
 

  
 

It is recommended to understand what is a neural network before reading this 
chapter. In The process of building a neural network, one of the choices you get 
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to make is what activation function to use in the hidden layer as well as at the 
output layer of the network. 

Elements of a Neural Network :- Input Layer :- This layer accepts input 
features. It provides information from the outside world to the network, no 
computation is performed at this layer, nodes here just pass on the 
information(features) to the hidden layer. Hidden Layer :- Nodes of this layer 
are not exposed to the outer world, they are the part of the abstraction provided 
by any neural network. Hidden layer performs all sort of computation on the 
features entered through the input layer and transfer the result to the output layer. 
Output Layer :- This layer bring up the information learned by the network to 
the outer world. 

What is an activation function and why to use them? Definition of activation 

function:- Activation function decides, whether a neuron should be activated or 
not by calculating weighted sum and further adding bias with it. The purpose of 
the activation function is to introduce non-linearity into the output of a neuron. 

Explanation :- We know, neural network has neurons that work in 
correspondence of weight, bias and their respective activation function. In a neural 
network, we would update the weights and biases of the neurons on the basis of 
the error at the output. This process is known as back-propagation. Activation 
functions make the back-propagation possible since the gradients are supplied 
along with the error to update the weights and biases. 

 

Why do we need Non-linear activation functions :- A neural network 
without an activation function is essentially just a linear regression model. The 
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activation function does the non-linear transformation to the input making it 
capable to learn and perform more complex tasks. 

Mathematical proof :- Suppose we have a Neural net like this :- 

Elements of the diagram are as follows: 

Hidden layer i.e. layer 1: 

z(1) = W(1)X + b(1) a(1) = z(1) Here, 

• z(1) is the vectorized output of layer 1 

• W(1) be the vectorized weights assigned to neurons of hidden layer i.e. 

w1, w2, w3 and w4 

• X be the vectorized input features i.e. i1 and i2 

• b is the vectorized bias assigned to neurons in hidden layer i.e. b1 and 

b2 

• a(1) is the vectorized form of any linear function. 

(Note: We are not considering activation function here) 

Layer 2 i.e. output layer :- 

// Note : Input for layer 

// 2 is output from layer 1 

z(2) = W(2)a(1) + b(2) 

a(2) = z(2) 

Calculation at Output layer: 

// Putting value of z(1) here 

z(2) = (W(2) * [W(1)X + b(1)]) + b(2) 

z(2) = [W(2) * W(1)] * X + [W(2)*b(1) + b(2)] 

Let, 

[W(2) * W(1)] = W 

[W(2)*b(1) + b(2)] = b 

Final output : z(2) = W*X + b 

Which is again a linear function 

This observation results again in a linear function even after applying a hidden 
layer, hence we can conclude that, doesn‘t matter how many hidden layer we attach 
in neural net, all layers will behave same way because the composition of two 

linear function is a linear function itself. Neuron can not learn with just a linear 
function attached to it. A non-linear activation function will let it learn as per the 
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difference w.r.t error. Hence we need activation function. VARIANTS OF 

ACTIVATION FUNCTION :- 

1). Linear Function :- 

• Equation : Linear function has the equation similar to as of a straight line 
i.e. y = x 

• No matter how many layers we have, if all are linear in nature, the final 
activation function of last layer is nothing but just a linear function of the 
input of first layer. 

• Range : -inf to +inf 

• Uses : Linear activation function is used at just one place i.e. output 
layer. 

• Issues : If we will differentiate linear function to bring non-linearity, result 
will no more depend on input “x” and function will become constant, it 
won‘t introduce any ground-breaking behavior to our algorithm. 

For example : Calculation of price of a house is a regression problem. House 
price may have any big/small value, so we can apply linear activation at output 
layer. Even in this case neural net must have any non-linear function at hidden 
layers. 

2). Sigmoid Function :- 

• It is a function which is plotted as „S‟ shaped graph. 

• Equation : A = 1/(1 + e-x) 

• Nature : Non-linear. Notice that X values lies between -2 to 2, Y values 
are very steep. This means, small changes in x would also bring about large 
changes in the value of Y. 

• Value Range : 0 to 1 

• Uses : Usually used in output layer of a binary classification, where result 
is either 0 or 1, as value for sigmoid function lies between 0 and 1 only 
so, result can be predicted easily to be 1 if value is greater than 0.5 and 
0 otherwise. 

3). Tanh Function :- The activation that works almost always better than 
sigmoid function is Tanh function also knows as Tangent Hyperbolic function. 
It‘s actually mathematically shifted version of the sigmoid function. Both are 
similar and can be derived from each other. 

• Equation :- 

f(x) = tanh(x) = 2/(1 + e-2x) - 1 
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OR 

tanh(x) = 2 * sigmoid(2x) - 1 

• Value Range :- -1 to +1 

• Nature :- non-linear 

• Uses :- Usually used in hidden layers of a neural network as it‘s values 
lies between -1 to 1 hence the mean for the hidden layer comes out be 
0 or very close to it, hence helps in centering the data by bringing mean 
close to 0. This makes learning for the next layer much easier. 

• Equation :- A(x) = max(0,x). It gives an output x if x is positive and 0 
otherwise. 

• Value Range :- [0, inf) 

• Nature :- non-linear, which means we can easily backpropagate the errors 
and have multiple layers of neurons being activated by the ReLU function. 

• Uses :- ReLu is less computationally expensive than tanh and sigmoid 
because it involves simpler mathematical operations. At a time only a few 
neurons are activated making the network sparse making it efficient and 
easy for computation. 

In simple words, RELU learns much faster than sigmoid and Tanh function. 

5). Softmax Function :- The softmax function is also a type of sigmoid 
function but is handy when we are trying to handle mult- class classification 
problems. 

• Nature :- non-linear 

• Uses :- Usually used when trying to handle multiple classes. the softmax 
function was commonly found in the output layer of image classification 
problems.The softmax function would squeeze the outputs for each class 
between 0 and 1 and would also divide by the sum of the outputs. 

• Output:- The softmax function is ideally used in the output layer of the 
classifier where we are actually trying to attain the probabilities to define 
the class of each input. 

• The basic rule of thumb is if you really don‘t know what activation 
function to use, then simply use RELU as it is a general activation function 
in hidden layers and is used in most cases these days. 

• If your output is for binary classification then, sigmoid function is very 
natural choice for output layer. 

• If your output is for multi-class classification then, Softmax is very useful 
to predict the probabilities of each classes. 
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Deep Learning, to a large extent, is really about solving massive nasty 
optimization problems. A Neural Network is merely a very complicated function, 
consisting of millions of parameters, that represents a mathematical solution to 
a problem. Consider the task of image classification. AlexNet is a mathematical 
function that takes an array representing RGB values of an image, and produces 
the output as a bunch of class scores. 

By training neural networks, we essentially mean we are minimising a loss 
function. The value of this loss function gives us a measure how far from perfect 
is the performance of our network on a given dataset. 

THE LOSS FUNCTION 

Let us, for sake of simplicity, let us assume our network has only two parameters. 
In practice, this number would be around a billion, but we‘ll still stick to the two 
parameter example throughout the post so as not drive ourselves nuts while trying 
to visualise things. Now, the countour of a very nice loss function may look like 
this. 

 
 

 

Contour of a Loss Function 

Why do I say a very nice loss function? Because a loss function having a 
contour like above is like Santa, it doesn‘t exist. However, it still serves as a decent 
pedagogical tool to get some of the most important ideas about gradient descent 
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across the board. So, let‘s get to it! The x and y axes represent the values of the 
two weights. The z axis represents the value of the loss function for a particular 
value of two weights. Our goal is to find the particular value of weight for which 
the loss is minimum. Such a point is called a minima for the loss function. 

You have randomly initialized weights in the beginning, so your neural network 
is probably behaving like a drunk version of yourself, classifying images of cats 
as humans. Such a situation correspond to point A on the contour, where the 
network is performing badly and consequently the loss is high. 

We need to find a way to somehow navigate to the bottom of the ―valley‖ 
to point B, where the loss function has a minima? So how do we do that? 

 
 

 

Gradient Descent 

When we initialize our weights, we are at point A in the loss landscape. The 
first thing we do is to check, out of all possible directions in the x-y plane, moving 

along which direction brings about the steepest decline in the value of the 

loss function. This is the direction we have to move in. This direction is given 
by the direction exactly opposite to the direction of the gradient. The gradient, 
the higher dimensional cousin of derivative, gives us the direction with the steepest 
ascent. 

To wrap your head around it, consider the following figure. At any point of 
our curve, we can define a plane that is tangential to the point. In higher dimensions, 
we can always define a hyperplane, but let‘s stick to 3-D for now. Then, we can 
have infinite directions on this plane. Out of them, precisely one direction will 
give us the direction in which the function has the steepest ascent. This direction 
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is given by the gradient. The direction opposite to it is the direction of steepest 
descent. This is how the algorithm gets it‘s name. We perform descent along the 
direction of the gradient, hence, it‘s called Gradient Descent. 

Now, once we have the direction we want to move in, we must decide the 
size of the step we must take. The the size of this step is called the learning rate. 
We must chose it carefully to ensure we can get down to the minima. 

 

If we go too fast, we might overshoot the minima, and keep bouncing along 
the ridges of the ―valley‖ without ever reaching the minima. Go too slow, and 
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the training might turn out to be too long to be feasible at all. Even if that‘s not 
the case, very slow learning rates make the algorithm more prone to get stuck in 
a minima, something we‘ll cover later in this post. 

Once we have our gradient and the learning rate, we take a step, and recompute 
the gradient at whatever position we end up at, and repeat the process. 

While the direction of the gradient tells us which direction has the steepest 
ascent, it‘s magnitude tells us how steep the steepest ascent/descent is. So, at the 
minima, where the contour is almost flat, you would expect the gradient to be 
almost zero. In fact, it‘s precisely zero for the point of minima. 

Gradient Descent in Action 

 

Using too large a learning rate 

In practice, we might never exactly reach the minima, but we keep oscillating 
in a flat region in close vicinity of the minima. As we oscillate our this region, 
the loss is almost the minimum we can achieve, and doesn‘t change much as we 
just keep bouncing around the actual minimum. Often, we stop our iterations when 
the loss values haven‘t improved in a pre-decided number, say, 10, or 20 iterations. 
When such a thing happens, we say our training has converged, or convergence 
has taken place. 

A COMMON MISTAKE 

Let me digress for a moment. If you google for visualizations of gradient 
descent, you‘ll probably see a trajectory that starts from a point and heads to a 
minima, just like the animation presented above. However, this gives you a very 
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inaccurate picture of what gradient descent really is. The trajectory we take is 
entire confined to the x-y plane, the plane containing the weights. 

As depicted in the above animation, gradient descent doesn‘t involve moving 
in z direction at all. This is because only the weights are the free parameters, 
described by the x and y directions. The actual trajectory that we take is defined 
in the x-y plane as follows. 

 
 

Real Gradient Descent Trajectory 

Each point in the x-y plane represents a unique combination of weights, and 
we want have a sets of weights described by the minima. 

BASIC EQUATIONS 

The basic equation that describes the update rule of gradient descent is. 
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This update is performed during every iteration. Here, w is the weights vector, 
which lies in the x-y plane. From this vector, we subtract the gradient of the loss 
function with respect to the weights multiplied by alpha, the learning rate. The 
gradient is a vector which gives us the direction in which loss function has the 
steepest ascent. 

The direction of steepest descent is the direction exactly opposite to the 
gradient, and that is why we are subtracting the gradient vector from the weights 
vector. 

If imagining vectors is a bit hard for you, almost the same update rule is 
applied to every weight of the network simultaneously. The only change is that 
since we are performing the update individually for each weight now, the gradient 
in the above equation is replaced the the projection of the gradient vector along 
the direction represented by the particular weight. 

This update is simultaneously done for all the weights. 

Before subtracting we multiply the gradient vector by the learning rate. This 
represents the step that we talked about earlier. Realise that even if we keep the 
learning rate constant, the size of step can change owing to changes in magnitude 
of the gradient, ot the steepness of the loss contour. As we approach a minima, 
the gradient approaches zero and we take smaller and smaller steps towards the 
minima. 

In theory, this is good, since we want the algorithm to take smaller steps when 
it approaches a minima. Having a step size too large may cause it to overshoot 
a minima and bounce between the ridges of the minima. 

A widely used technique in gradient descent is to have a variable learning rate, 
rather than a fixed one. Initially, we can afford a large learning rate. But later on, 
we want to slow down as we approach a minima. An approach that implements 
this strategy is called Simulated annealing, or decaying learning rate. In this, the 
learning rate is decayed every fixed number of iterations. 
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CHALLENGES WITH GRADIENT DESCENT #1: LOCAL 
MINIMA 

Okay, so far, the tale of Gradient Descent seems to be a really happy one. 
Well. Let me spoil that for you. Remember when I said our loss function is very 

nice, and such loss functions don‘t really exists? They don‘t. 
First, neural networks are complicated functions, with lots of non-linear 

transformations thrown in our hypothesis function. The resultant loss function 
doesn‘t look a nice bowl, with only one minima we can converge to. In fact, such 
nice santa-like loss functions are called convex functions (functions for which are 
always curving upwards) , and the loss functions for deep nets are hardly convex. 
In fact, they may look like this. 

In the above image, there exists a local minima where the gradient is zero. 
However, we know that they are not the lowest loss we can achieve, which is the 
point corresponding to the global minima. Now, if you initialze your weights at 
point A, then you‘re gonna converge to the local minima, and there‘s no way 
gradient descent will get you out of there, once you converge to the local minima. 

 

Gradient descent is driven by the gradient, which will be zero at the base of 
any minima. Local minimum are called so since the value of the loss function is 
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minimum at that point in a local region. Whereas, a global minima is called so 
since the value of the loss function is minimum there, globally across the entire 
domain the loss function. 

Only to make things worse, the loss contours even may be more complicated, 
given the fact that 3-d contours like the one we are considering never actually 
happen in practice. In practice, our neural network may have about, give or take, 
1 billion weights, given us a roughly (1 billion + 1) dimensional function. I don‘t 
even know the number of zeros in that figure. 

In fact, it‘s even hard to visualize what such a high dimensional function. 
However, given the sheer talent in the field of deep learning these days, people 
have come up with ways to visualize, the contours of loss functions in 3-D. A 
recent paper pioneers a technique called Filter Normalization, explaining which 
is beyond the scope of this post. 

However, it does give to us a view of the underlying complexities of loss 
functions we deal with. For example, the following contour is a constructed 3- 
D representation for loss contour of a VGG-56 deep network‘s loss function on 
the CIFAR-10 dataset. 

CHALLENGES WITH GRADIENT DESCENT #2: SADDLE 
POINTS 

The basic lesson we took away regarding the limitation of gradient descent 
was that once it arrived at a region with gradient zero, it was almost impossible 
for it to escape it regardless of the quality of the minima. Another sort of problem 
we face is that of saddle points, which look like this. 
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A Saddle Point 

You can also see a saddle point in the earlier pic where two ―mountains‖ meet. 

A saddle point gets it‘s name from the saddle of a horse with which it 
resembles. 

While it‘s a minima in one direction (x), it‘s a local maxima in another 
direction, and if the contour is flatter towards the x direction, GD would keep 
oscillating to and fro in the y - direction, and give us the illusion that we have 
converged to a minima. 

RANDOMNESS TO THE RESCUE! 

So, how do we go about escaping local minima and saddle points, while trying 
to converge to a global minima. The answer is randomness. 

Till now we were doing gradient descent with the loss function that had been 
created by summing loss over all possible examples of the training set. If we get 
into a local minima or saddle point, we are stuck. A way to help GD escape these 
is to use what is called Stochastic Gradient Descent. 

In stochastic gradient descent, instead of taking a step by computing the 
gradient of the loss function creating by summing all the loss functions, we take 
a step by computing the gradient of the loss of only one randomly sampled (without 
replacement) example. 

In contrast to Stochastic Gradient Descent, where each example is 
stochastically chosen, our earlier approach processed all examples in one single 
batch, and therefore, is known as Batch Gradient Descent. 
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The update rule is modified accordingly. 

Update Rule For Stochastic Gradient Descent 

This means, at every step, we are taking the gradient of a loss function, which 
is different from our actual loss function (which is a summation of loss of every 
example). The gradient of this ―one-example-loss‖ at a particular may actually 
point in a direction slighly different to the gradient of ―all-example-loss‖. 

This also means, that while the gradient of the ―all-example-loss‖ may push 
us down a local minima, or get us stuck at a saddle point, the gradient of ―one- 
example-loss‖ might point in a different direction, and might help us steer clear 
of these. 

One could also consider a point that is a local minima for the ―all-example- 
loss‖. If we‘re doing Batch Gradient Descent, we will get stuck here since the 
gradient will always point to the local minima. However, if we are using Stochastic 
Gradient Descent, this point may not lie around a local minima in the loss contour 
of the ―one-example-loss‖, allowing us to move away from it. 

Even if we get stuck in a minima for the ―one-example-loss‖, the loss landscape 
for the ―one-example-loss‖ for the next randomly sampled data point might be 
different, allowing us to keep moving. 

When it does converge, it converges to a point that is a minima for almost 
all the ―one-example-losses‖. It‘s also been emperically shown the saddle points 
are extremely unstable, and a slight nudge may be enough to escape one. 

So, does this mean in practice, should be always perform this one-example 
stochastic gradient descent? 

BATCH SIZE 

The answer is no. Though from a theoretical standpoint, stochastic gradient 
descent might give us the best results, it‘s not a very viable option from a 
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computational stand point. When we perform gradient descent with a loss function 
that is created by summing all the individual losses, the gradient of the individual 
losses can be calculated in parallel, whereas it has to calculated sequentially step 
by step in case of stochastic gradient descent. 

So, what we do is a balancing act. Instead of using the entire dataset, or just 
a single example to construct our loss function, we use a fixed number of examples 
say, 16, 32 or 128 to form what is called a mini-batch. The word is used in contrast 
with processing all the examples at once, which is generally called Batch Gradient 
Descent. 

The size of the mini-batch is chosen as to ensure we get enough stochasticity 
to ward off local minima, while leveraging enough computation power from 
parallel processing. 

LOCAL MINIMA REVISITED: THEY ARE NOT AS BAD AS 
YOU THINK 

Before you antagonise local minima, recent research has shown that local 
minima is not neccasarily bad. In the loss landscape of a neural network, there 
are just way too many minimum, and a ―good‖ local minima might perform just 
as well as a global minima. 

Why do I say ―good‖? Because you could still get stuck in ―bad‖ local minima 
which are created as a result of erratic training examples. ―Good‖ local minima, 
or often referred to in literature as optimal local minima, can exist in considerable 
numbers given a neural network‘s high dimensional loss function. 

It might also be noted that a lot of neural networks perform classification. If 
a local minima corresponds to it producing scores between 0.7-0.8 for the correct 
labels, while the global minima has it producing scores between 0.95-0.98 for the 
correct labels for same examples, the output class prediction is going to be same 
for both. 

A desirable property of a minima should be it that it should be on the 

flatter side. Why? Because flat minimum are easy to converge to, given there‘s 
less chance to overshoot the minima, and be bouncing between the ridges of the 
minima. 

More importantly, we expect the loss surface of the test set to be slightly 
different from that of the training set, on which we do our training. For a flat and 
wide minima, the loss won‘t change much due to this shift, but this is not the case 
for narrow minima. The point that we are trying to make is flatter minima 
generalise better and are thus desirable. 
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Deep Learning is a part of Machine Learning used to solve complex problems 
and build intelligent solutions. The core concept of Deep Learning has been 
derived from the structure and function of the human brain. Deep Learning uses 
artificial neural networks to analyze data and make predictions. It has found its 
application in almost every sector of business. 

DEEP LEARNING APPLICATIONS 

Virtual Assistants 

Virtual Assistants are cloud-based applications that understand natural language 
voice commands and complete tasks for the user. Amazon Alexa, Cortana, Siri, 
and Google Assistant are typical examples of virtual assistants. They need internet- 
connected devices to work with their full capabilities. Each time a command is 
fed to the assistant, they tend to provide a better user experience based on past 
experiences using Deep Learning algorithms. 

Chatbots 

Chatbots can solve customer problems in seconds. A chatbot is an AI application 
to chat online via text or text-to-speech. It is capable of communicating and 
performing actions similar to a human. 

Chatbots are used a lot in customer interaction, marketing on social network 
sites, and instant messaging the client. It delivers automated responses to user 
inputs. It uses machine learning and deep learning algorithms to generate different 
types of reactions. 

Healthcare 

Deep Learning has found its application in the Healthcare sector. Computer- 
aided disease detection and computer-aided diagnosis have been possible using 
Deep Learning. It is widely used for medical research, drug discovery, and diagnosis 
of life-threatening diseases such as cancer and diabetic retinopathy through the 
process of medical imaging. 

Entertainment 

Companies such as Netflix, Amazon, YouTube, and Spotify give relevant 
movies, songs, and video recommendations to enhance their customer experience. 
This is all thanks to Deep Learning. Based on a person‘s browsing history, interest, 
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and behavior, online streaming companies give suggestions to help them make 
product and service choices. Deep learning techniques are also used to add sound 
to silent movies and generate subtitles automatically. 

News Aggregation and Fake News Detection 

Deep Learning allows you to customize news depending on the readers‘ 
persona. You can aggregate and filter out news information as per social, 
geographical, and economic parameters and the individual preferences of a reader. 
Neural Networks help develop classifiers that can detect fake and biased news 
and remove it from your feed. They also warn you of possible privacy breaches. 

Composing Music 

A machine can learn the notes, structures, and patterns of music and start 
producing music independently. Deep Learning-based generative models such as 
WaveNet can be used to develop raw audio. Long Short Term Memory Network 
helps to generate music automatically. Music21 Python toolkit is used for computer- 
aided musicology. It allows us to train a system to develop music by teaching music 
theory fundamentals, generating music samples, and studying music. 

Image Coloring 

Image colorization has seen significant advancements using Deep Learning. 
Image colorization is taking an input of a grayscale image and then producing an 
output of a colorized image. ChromaGAN is an example of a picture colorization 
model. A generative network is framed in an adversarial model that learns to 
colorize by incorporating a perceptual and semantic understanding of both class 
distributions and color. 

Robotics 

Deep Learning is heavily used for building robots to perform human-like tasks. 
Robots powered by Deep Learning use real-time updates to sense obstacles in their 
path and pre-plan their journey instantly. It can be used to carry goods in hospitals, 
factories, warehouses, inventory management, manufacturing products, etc. 

Boston Dynamics robots react to people when someone pushes them around, 
they can unload a dishwasher, get up when they fall, and do other tasks as well. 

Now, let‘s understand our next deep learning application, i.e. Image captioning. 

Image Captioning 

Image Captioning is the method of generating a textual description of an 
image. It uses computer vision to understand the image‘s content and a language 
model to turn the understanding of the image into words in the right order. A 
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recurrent neural network such as an LSTM is used to turn the labels into a coherent 
sentence. Microsoft has built its caption bot where you can upload an image or 
the URL of any image, and it will display the textual description of the image. 
Another such application that suggests a perfect caption and best hashtags for a 
picture is Caption AI. 

Advertising 

In Advertising, Deep Learning allows optimizing a user‘s experience. Deep 
Learning helps publishers and advertisers to increase the significance of the ads 
and boosts the advertising campaigns. It will enable ad networks to reduce costs 
by dropping the cost per acquisition of a campaign from $60 to $30. You can create 
data-driven predictive advertising, real-time bidding of ads, and target display 
advertising. 

Self Driving Cars 

Deep Learning is the driving force behind the notion of self-driving automobiles 
that are autonomous. Deep Learning technologies are actually ―learning machines‖ 
that learn how to act and respond using millions of data sets and training. To 
diversify its business infrastructure, Uber Artificial Intelligence laboratories are 
powering additional autonomous cars and developing self-driving cars for on- 
demand food delivery. Amazon, on the other hand, has delivered their merchandise 
using drones in select areas of the globe. 

The perplexing problem about self-driving vehicles that the bulk of its designers 
are addressing is subjecting self-driving cars to a variety of scenarios to assure 
safe driving. They have operational sensors for calculating adjacent objects. 
Furthermore, they manoeuvre through traffic using data from its camera, sensors, 
geo-mapping, and sophisticated models. Tesla is one popular example. 

Natural Language Processing 

Another important field where Deep Learning is showing promising results 
is NLP, or Natural Language Processing. It is the procedure for allowing robots 
to study and comprehend human language. 

However, keep in mind that human language is excruciatingly difficult for 
robots to understand. Machines are discouraged from correctly comprehending or 
creating human language not only because of the alphabet and words, but also 
because of context, accents, handwriting, and other factors. 

Many of the challenges associated with comprehending human language are 
being addressed by Deep Learning-based NLP by teaching computers (Autoencoders 
and Distributed Representation) to provide suitable responses to linguistic inputs. 
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Visual Recognition 

Just assume you‘re going through your old memories or photographs. You may 
choose to print some of these. In the lack of metadata, the only method to achieve 
this was through physical labour. The most you could do was order them by date, 
but downloaded photographs occasionally lack that metadata. Deep Learning, on 
the other hand, has made the job easier. Images may be sorted using it based on 
places recognised in pictures, faces, a mix of individuals, events, dates, and so 
on. To detect aspects when searching for a certain photo in a library, state-of-the- 
art visual recognition algorithms with various levels from basic to advanced are 
required. 

Fraud Detection 

Another attractive application for deep learning is fraud protection and detection; 
major companies in the payment system sector are already experimenting with it. 
PayPal, for example, uses predictive analytics technology to detect and prevent 
fraudulent activity. The business claimed that examining sequences of user behaviour 
using neural networks‘ long short-term memory architecture increased anomaly 
identification by up to 10%. Sustainable fraud detection techniques are essential 
for every fintech firm, banking app, or insurance platform, as well as any organisation 
that gathers and uses sensitive data. Deep learning has the ability to make fraud 
more predictable and hence avoidable. 

Personalisations 

Every platform is now attempting to leverage chatbots to create tailored 
experiences with a human touch for its users. Deep Learning is assisting e- 
commerce behemoths such as Amazon, E-Bay, and Alibaba in providing smooth 
tailored experiences such as product suggestions, customised packaging and 
discounts, and spotting huge income potential during the holiday season. Even in 
newer markets, reconnaissance is accomplished by providing goods, offers, or 
plans that are more likely to appeal to human psychology and contribute to growth 
in micro markets. Online self-service solutions are on the increase, and dependable 
procedures are bringing services to the internet that were previously only physically 
available. 

Detecting Developmental Delay in Children 

Early diagnosis of developmental impairments in children is critical since 
early intervention improves children‘s prognoses. Meanwhile, a growing body of 
research suggests a link between developmental impairment and motor competence, 
therefore motor skill is taken into account in the early diagnosis of developmental 
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disability. However, because of the lack of professionals and time restrictions, 
testing motor skills in the diagnosis of the developmental problem is typically done 
through informal questionnaires or surveys to parents. This is progressively 
becoming achievable with deep learning technologies. Researchers at MIT‘s 
Computer Science and Artificial Intelligence Laboratory and the Institute of Health 
Professions at Massachusetts General Hospital have created a computer system 
that can detect language and speech impairments even before kindergarten. 

Colourisation of Black and White images 

The technique of taking grayscale photos in the form of input and creating 
colourized images for output that represent the semantic colours and tones of the 
input is known as image colourization. Given the intricacy of the work, this 
technique was traditionally done by hand using human labour. However, using 
today‘s Deep Learning Technology, it is now applied to objects and their context 
inside the shot - in order to colour the image, in the same way that a human operator 
would. In order to reproduce the picture with the addition of color, high-quality 
convolutional neural networks are utilized in supervised layers. 

Adding Sounds to Silent Movies 

In order to make a picture feel more genuine, sound effects that were not 
captured during production are frequently added. This is referred to as ―Foley.‖ 
Deep learning was used by researchers at the University of Texas to automate this 
procedure. They trained a neural network on 12 well-known film incidents in 
which filmmakers commonly used Foley effects. Their neural network identifies 
the sound to be generated, and they also have a sequential network that produces 
the sound. They employed neural networks to transition from temporally matched 
visuals to sound creation, a completely another medium! 

Automatic Machine Translation 

Deep learning has changed several disciplines in recent years. In response to 
these advancements, the field of Machine Translation has switched to the use of 
deep-learning neural-based methods, which have supplanted older approaches 
such as rule-based systems or statistical phrase-based methods. Neural MT (NMT) 
models can now access the whole information accessible anywhere in the source 
phrase and automatically learn which piece is important at which step of synthesising 
the output text, thanks to massive quantities of training data and unparalleled 
processing power. The elimination of previous independence assumptions is the 
primary cause for the remarkable improvement in translation quality. This resulted 
in neural translation closing the quality gap between human and neural translation. 
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Automatic Handwriting Generation 

This Deep Learning application includes the creation of a new set of handwriting 
for a given corpus of a word or phrase. The handwriting is effectively presented 
as a series of coordinates utilised by a pen to make the samples. The link between 
pen movement and letter formation is discovered, and additional instances are 
developed. 

Automatic Game Playing 

A corpus of text is learned here, and fresh text has created word for word or 
character for character. Using deep learning algorithms, it is possible to learn how 
to spell, punctuate, and even identify the style of the text in corpus phrases. Large 
recurrent neural networks are typically employed to learn text production from 
objects in sequences of input strings. However, LSTM recurrent neural networks 
have lately shown remarkable success in this challenge by employing a character- 
based model that creates one character at a time. 

Demographic and Election Predictions 

Gebru et al used 50 million Google Street View pictures to see what a Deep 
Learning network might accomplish with them. As usual, the outcomes were 
amazing. The computer learned to detect and pinpoint automobiles and their specs. 
It was able to identify approximately 22 million automobiles, as well as their make, 
model, body style, and year. The explorations did not end there, inspired by the 
success story of these Deep Learning capabilities. The algorithm was shown to 
be capable of estimating the demographics of each location based just on the 
automobile makeup. 

Deep Dreaming 

DeepDream is an experiment that visualises neural network taught patterns. 
DeepDream, like a toddler watching clouds and attempting to decipher random 
forms, over-interprets and intensifies the patterns it finds in a picture. 

It accomplishes this by sending an image across the network and then calculating 
the gradient of the picture in relation to the activations of a certain layer. The image 
is then altered to amplify these activations, improving the patterns perceived by 
the network and producing a dream-like visual. This method was named 
―Inceptionism‖ (a reference to InceptionNet, and the movie Inception). 
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