

Communication in Cluster Based Mobile AD Hoc Network:

A Reliability Analysis

Dr. Parveen Kumari Prof. Gaurav Aggarwal Prof. Sugandha Singh

Communication in Cluster Based Mobile AD Hoc Network: A Reliability Analysis

India | UAE | Nigeria | Uzbekistan | Montenegro | Iraq | Egypt | Thailand | Uganda | Philippines | Indonesia www.parabpublications.com

Communication in Cluster Based Mobile AD Hoc Network: A Reliability Analysis

Authored By:

Dr. Parveen Kumari Assistant Professor, Computer Science and Applications GITAM, Kablana

> **Prof. Gaurav Aggarwal** Dean & HOD Faculty of Engineering and Technology Jagan Nath University, Bahadurgarh

Prof. Sugandha Singh Dean, Faculty of Engineering and Technology, SGT University, Gurugram Copyright 2024 by Dr. Parveen Kumari, Prof. Gaurav Aggarwal and Prof. Sugandha Singh

First Impression: July 2024

Communication in Cluster Based Mobile AD Hoc Network: A Reliability Analysis

ISBN: 978-81-19585-80-9

DOI: <u>https://doi.org/10.5281/zenodo.12752337</u>

Rs. 1000/- (\$80)

No part of the book may be printed, copied, stored, retrieved, duplicated and reproduced in any form without the written permission of the editor/publisher.

DISCLAIMER

Information contained in this book has been published by Parab Publications and has been obtained by the authors from sources believed to be reliable and correct to the best of their knowledge. The authors are solely responsible for the contents of the articles compiled in this book. Responsibility of authenticity of the work or the concepts/views presented by the author through this book shall lie with the author and the publisher has no role or claim or any responsibility in this regard. Errors, if any, are purely unintentional and readers are requested to communicate such error to the author to avoid discrepancies in future.

Published by: Parab Publications

Certificate of the Supervisor

This is to certify that the research work entitled "**Communication in Cluster Based Mobile Ad Hoc Network: A Reliability Analysis**" being submitted by Parveen Kumari, enrollment no. JNU/RS/2017/ET003 is the original research work and has been carried by the author under my supervision. In my opinion, the work addressed in this report has reached the standard of fulfilling the requirements of all regulations related to the degree. The results presented by this report have not been submitted to any other institute or university for the award of any degree or diploma.

(Signature of Supervisor)

Dr. Gaurav Aggarwal HOD of Computer Science Department Jagannath University, Jhajjar Haryana

IV

Certificate of Co-Supervisor

This is to certify that the research work entitled "Communication in Cluster Based Mobile Ad Hoc Network: A Reliability Analysis" being submitted by Parveen Kumari, enrollment no. JNU/RS/2017/ET003 is the original research work and has been carried by the author under my co-supervision. In my opinion, the work addressed in this report has reached the standard of fulfilling the requirement of all regulations related to the degree. The results presented by this report have not been submitted to any other institute or university for the award of any degree or diploma.

crolla.

(Co- Supervisor)

Dr. Sugandha Singh Professor, Computer Science and Engineering G.H Raisoni college of Engineering Nagpur

Candidate's Declaration

I hereby certify that the presented work in this thesis "**Communication in Cluster Based Mobile Ad hoc Network: A Reliability Analysis**" in fulfillment of requirement for the award of degree of Doctor of Philosophy and submitted in Jagannath University, Bahadurgarh (HR) is a bonafied record of my work carried out during October 2017 to October 2020 under the supervision of Dr. Gaurav Aggarwal and Prof. Sugandha Singh.

I have not submitted this work presented in this thesis for the award of any other degree in this university or any other institute/university.

(Parveen Kumari)

Abstract

Mobile Ad hoc Networks (MANET) are supposed to provide good quality of services (QoS) under varying capacity of wireless channel with balanced energy consumption. But energy consumption also vary according to network formation. These varying conditions of channel and energy create difficulty in reliable and real time communication in MANETs. For these issues clustering has been taken into consideration where two techniques are used to attain reliable communication in MANET. These techniques are: Use of efficient energy and Quality of Services(QoS)

Mobile ad hoc networks consist the nodes which all are under energy constrained. Here, to reduce the consumption in energy is important. In this work, the main concentration is on the energy efficient communication in MANETs. A new strategy is being proposed for improving Weighted Clustering Algorithm (WCA) and clustering the wireless ad hoc networks. It has been shown that Node Quality based Weighted Clustering Algorithm (NQWCA) exceeds WCA. NQWCA has been proposed that computes the weight of each node within the cluster and node with lowest weight is elected as Cluster Head(CH). It outperforms in terms of network stability and cluster formation.

Mobile Ad hoc Network (MANET) are multi hop wireless networks that result from the cooperative engagement of a collection of mobile hosts without any centralized access point and infrastructure. The various nodes can directly communicate only when participating nodes are located within each other's radio range. The proposed work has enhanced the energy efficiency. Energy and queue length are QoS factors which provides the better performance in MANET. The combination of these factors are used for the process of route construction. Hence the basic routing protocol AODV is modified in the proposed protocol i.e EQ-AODV (Energy and Queue-AODV) which constructs the routes on the basis of 1) minimum length of nodes queue 2) maximum net energy of nodes. Mobile ad hoc network is a wireless self organized network. The mobile nodes in the MANET dynamically establish routes among themselves to form their own network in an ad hoc fashion to make the communication between users more reliable. But still there are some challenges which effect the reliability of MANET. In this paper, the main focus is on the use of efficient energy and quality of services to make the reliable communication. Here the proposed solution works on the cluster based energy efficient ad hoc on-demand distance vector (EE-AODV) which gives the better result as compared to the previous proposed EQ-AODV and basic AODV.

Acknowledgment

First of all I would like to bow my head in front of God, the most Beneficent and Merciful who has given me strength, persistence and knowledge to execute this research work.

This thesis contains research work conducted at Jagannath University, Jhajjar (HR) from October 2017 to October 2020 under the supervision of Dr. Gaurav Aggarwal and Prof. Sugandha Singh. I am highly grateful for their efforts, advice and encouragement. Their experience and expertise was a source of training during this period. I am motivated and inspired by them throughout the research activities.

Specially, I want to thank my husband (Mr. Chirag Dhankhar) for his love, support (financially, mentally and morally), never ending patience, providing peaceful environment at home, providing the facility of online training for my research.

I also want to thank my daughter (Ananya) for her love and patience. I must thank my father (Attar Singh) and father in law (Ajit Singh), my mother, mother in law and my brothers and my all family members who support me throughout this research journey. It is the power of their coordination, their unconditional love, courage and support that gave me strength, courage, confidence and faith throughout these years.

(Parveen Kumari)

About the Authors

Dr. Parveen Kumari is Assistant Professor in Department of computer science and Applications at Ganga Institute of Technology and Management college. Kablana, Jhajjar. She has 9 research papers published in Scopus/Springer conferences/ international and national Journals. Dr. Kumari is a inventive academician and researcher. She has completed her Ph.D Degree in Computer Science and Engineering in year 2021. Her area of research is networking. She has 4 years of academic experience. Dr. Kumari role as a mentor is significant.

Dr. Gaurav Aggarwal is a prolific academician and researcher. He completed his PhD (Computer Science & Engineering) from Jagannath University in the year 2016. He has a rich experience of over 18 years in the academics. He has presented research papers at various international and national conferences. He has published his research work in various journals, magazines and proceedings of repute. He has organized various International Conferences, Business Summits and Symposiums for various institutes. He has also chaired technical sessions in various National & International Seminars/Conferences at various prestigious

forums. His Major subject domains are Software Engineering, Computer Networks and Operating systems. He is a Member of Editorial Advisory Board of Gateway International Journal. Apart from above he is also working as Research Coordinator of Jagannath University and currently supervising 8 Scholars of Computer Science.

Dr. Sugandha **Singh** is Professor in Department of Computer Science and Engineering and Dean, Faculty of Engineering and Technology at Shri Guru Gobind Singh Tricentenary University, Gurugram. She is senior member of IEEE. IEEE-CS, IEEE-WIE, IEEE-VTS, IEEE-TCCC, SMC and Engineering Education. Being an administrator, she holds the membership of Computer Science Teacher Association (CSTA), Journal and Event Management System (JEMS), ECEDHA Computer Engineering (Electrical and Department Head Association. In addition to being the author of 05 books, she has 57 papers published research in major SCI/Scopus/Wos International and National Journals and Conferences. She has been rewarded with 05 awards: Best Innovative Teacher from KRA-MSME Registered Organization, Best Sangini Contributor from Air Force Family Welfare Association (AFFWA), and Best Innovator Award from NITI Ayog Savitribai Phule Excellence Awards, Wegrow research excellence award

2024 Leader and Women award in Leadership by Ek Nari 100 pe bhari 2024. On her name, there are 02 patents published, 03 granted, and 01 filed for grant. She reviews papers for IEEE approved conferences, UGC Journals, Journal of Institute of Engineers (India): Series B, and Springer's International Journal of Wireless Information Networks. She has been assigned the title of Cybercrime Intervention Officer by ISAC. She has a background in business analysis and a keen interest in management studies. She has guided 51 Post graduate Students and 3 Doctorate Students. She has 25 years of teaching experience, which includes 15 years of administration as well. Her research interests include Engineering Education, IIoT, IoT, Industry 4.0 & 5.0, Wireless Sensor Networks, MANETs, Cognitive Networks, and Business Analysis are some of her research interests.

Table of Contents

Certificate of the Supervisor	IV
Certificate of Co-Supervisor	V
Candidate's Declaration	VI
Abstract	VII - VIII
Acknowledgements	IX
About the Authors	X - XII
Table of Contents	XIII - XVIII
List of Figures	XIX
List of Tables	XX
List of Algorithms and Flowchart	XXI
Abbreviations	XXII - XXIII
Title of Chapters	Page No.
CHAPTER 1: INTRODUCTION	
CHAPTER I: INTRODUCTION1.1Wireless Networks	1
	1 2
1.1 Wireless Networks	
 Wireless Networks Infrastructure Based Networks 	2
 1.1 Wireless Networks 1.2 Infrastructure Based Networks 1.3 Infrastructure Less Based Networks 	2 2 - 3
 1.1 Wireless Networks 1.2 Infrastructure Based Networks 1.3 Infrastructure Less Based Networks 1.3.1 Smart Sensor Networks 	2 2 - 3 3
1.1Wireless Networks1.2Infrastructure Based Networks1.3Infrastructure Less Based Networks1.3.1Smart Sensor Networks1.3.2Mobile Ad hoc Network	2 2 - 3 3 3 - 6

	1.6.1	Characteristics comparison of MANET routing protocols	9 - 12
1.7	Proble	ems Investigated	11 - 12
1.8	Resear	rch Importance And Relevance	12
	1.8.1	Research Gap	12
	1.8.2	Research Aim	12
	1.8.3	Research Limitations	13
	1.8.4	Research Objectives	13
	1.8.5	Research Questions	13
1.9	Thesis	<i>Contribution</i>	13
	1.9.1	Proposed Simulation Tool	14
	1.9.2	Proposed Protocol	14
	1.9.3	Structural Model	14 - 15
	1.9.4	Proposed Algorithm	15 - 16
1.10	Organ	ization Of Thesis	16 - 17
1.11	Refere	ences	17 - 18
CHAF	PTER 2:	LITERATURE SURVEY	
2.1	Introd	luction to Mobile Ad hoc Networks	19
	2.1.1	Applications of MANET	19 - 20
	2.1.2	Categories of MANET	20
2.2	Cluste	ring	21
			XIV

	2.2.1	Clustering Goals	21 - 22
	2.2.2	Cluster Algorithm	22 - 23
		2.2.2.1 Overview of WCA	23 - 24
		2.2.2.2 Overview of k-means Algorithm	24
	2.2.3	Cluster Based Routing in MANETs	24 - 27
2.3	Qualit	y of Services	27
2.4	Netwo	rk Simulation in MANET	28
	2.4.1	Network Simulators for MANETs	29-30
2.5	Cost C	onstraint in MANET	30 - 31
2.6	Used H	Energy Efficient Protocol in MANET	31
	2.6.1	AODV (Ad-hoc On Demand Distant Vector)	31 - 34
	2.6.2	CBRP (Cluster Based Routing Protocol)	34 - 36
2.7	Motiva	ntion	36 - 37
2.8	Refere	nces	37 - 39

CHAPTER 3: CLUSTERING IN MOBILE AD HOC NETWORK : WCA ALGORITHM

3.1	Introduction	40 - 41
3.2	Weighted Clustering Algorithm(WCA)	41 - 42
3.3	Problem Statement	42 - 43
3.4	Network Models	43

	3.4.1 Node Priority Aggregation Model	43 - 44
	3.4.2 Range Zone Aggregation Model	44 - 45
3.5	Proposed Algorithm: Node Quality based Weighted Clustering Algorithm	46 - 48
	3.5.1 Explanation of NQWCA with example	48
	3.5.2 Working of Proposed Algorithm - NQWCA	49 - 52
3.6	Simulation Result	53
3.7	Summary	53
3.8	References	53 - 55
PERF	TER 4: (PROPOSED EQ-AODV) ORMANCE ANALYSIS OF AODV IN LE AD HOC NETWORK	
4.1	Introduction	56
4.2	AODV Architecture	56 - 57
4.3	Energy and Queue based AODV(EQ-AODV) Protocol	57 - 58
	431 RREO and RREP Protocol	58 - 59

4.1	Introduction	56
4.2	AODV Architecture	56 - 57
4.3	Energy and Queue based AODV(EQ-AODV) Protocol	57 - 58
	4.3.1 RREQ and RREP Protocol	58 - 59
	4.3.2 Maintaining Neighbor Table	59 - 60
4.4	EQ -AODV Algorithm	61
4.5	Simulation and Evaluation of Result	61 - 62
	4.5.1 Packet Delivery Ratio	63

	4.5.2	Energy Consumption	63 - 64
	4.5.3	Throughput	64 - 65
	4.5.4	Overhead	65 - 66
4.6	Summe	ary	66
4.7	Referen	nces	66 - 67
COMM	AUNICA	(PROPOSED EE-AODV) RELIABLE ATION USING ENERGY EFFICIENT N CLUSTER BASED MANET	
5.1	Introdi	uction	68 - 69
5.2	Problem	m Formulation	69
5.3	Cluster	ring of Nodes In MANET	69 - 70
	5.3.1	Advantages of Clustering	70
5.4		c On Demand Distance Vector(AODV) g Protocol	70 - 72
5.5	EQ-AC	DDV Routing Protocol	72 - 73
5.6	-	ed Energy Efficient Ad hoc On Demand ce Vector(EE-AODV) Routing Protocol	73 - 76
5.7	Simula	tion and Evaluation of Result	76 - 77
	5.7.1	Packet Delivery Ratio	78 - 79
	5.7.2	Energy Consumption	79 - 80
	5.7.3	Throughput	80 - 81
	5.7.4	Overhead	81 - 82

5.8	Summary	82
5.9	Reference	82 - 84
CHAPT WORK	TER 6: CONCLUSION AND FUTURE	68 - 76
6.1	Conclusions	85 - 89
6.2	Future Work	89 - 90
	Bibliography	91 - 99
	Appendix - A: Applicable Sectors	100 - 101
	Appendix - B: List of Publications	102

List of	Figures
---------	---------

Figure 1.1	A classic cellular topology route packets in single hop
Figure 1.2	Infrastructure Based Network
Figure 1.3	Infrastructure - less Based Network(MANET)
Figure 1.4	Mobile Ad hoc Network
Figure 1.5	MANET Protocol Stack
Figure 1.6	AODV Model
Figure 2.1	Bidirectional linked clusters
Figure 3.1(a)	WCA election stage
Figure 3.1(b)	WCA formation stage
Figure 3.2(a)	Trusted zone
Figure 3.2(b)	intermediate zone
Figure 3.2(c)	Risked zone
Figure 3.3(a)	NQWCA election
Figure 3.3(b)	NQWCA formation
Figure 4.1	AODV Model
Figure 4.2	PDR vs. Number of Nodes
Figure 4.3	Energy Consumption vs. Number of Nodes
Figure 4.4	Throughput vs. Number of Nodes
Figure 4.5	Overhead vs. Number of Nodes
Figure 5.1	Cluster Formation Between 100 nodes
Figure 5.2	PDR vs. Number of Nodes
Figure 5.3	Energy Consumption vs. Number of Nodes
Figure 5.4	Throughput vs. Number of Nodes
Figure 5.5	Overhead vs. Number of Nodes

List of Tables

Table 1.1	Characteristics comparison between existing protocols
Table 3.1	Set Nodes Partition
Table 3.2	Relation between node and zone
Table 3.3	Execution of NQWCA
Table 4.1	RREQ Control Packets Modification Format
Table 4.2	RREP Control Packets Modification Format
Table 4.3	Simulation Parameters
Table 4.4	PDR Simulation Result
Table 4.5	Energy Consumption Simulation Result
Table 4.6	Throughput Simulation Result
Table 4.7	Overhead Simulation Result
Table 5.1	Simulation Parameters
Table 5.2	Result of PDR for compared 3 protocols
Table 5.3	Result of Energy Consumption for compared 3 protocols
Table 5.4	Result of Throughput for compared 3 protocols
Table 5.5	Result of Overhead for compared 3 protocols

List of Algorithms

Algorithm 3.1	Node Quality Based Weighted Clustering Algorithm
Algorithm 4.1	EQ- AODV Algorithm
Algorithm 5.1	EE-AODV Algorithm

Flowchart

Flowchart 4.1	EQ- AODV Routing Protocol

Abbreviations

MANET	Mobile Ad hoc Network
WLAN	Wireless Local Area Network
FH	Fixed Host
MH	Mobile Host
MSR	Mobility Support Router
AP	Access Point
MN	Mobile Node
IETF	Internet Engineering Task Force
QoS	Quality of Services
СН	Cluster Head
DSDV	Destination Sequenced Distance Vector
DV	Distance Vector
FSR	Fisheye State Routing
AODV	Ad hoc On Demand Distance Vector Routing
DSR	Dynamic Source Routing Protocol
TORA	Temporally Ordered Routing Algorithm
ASR	Associative Based Routing Protocol
HRP	Hybrid Routing Protocol
DVRP	Distance Vector Routing Protocol
LSRP	Link State Routing Protocol
ZRP	Zone Routing Protocol
P2P	Peer to Peer
OLSR	Optimizing Link State Routing
PLBR	Preferred Link Based Routing
CBRP	Cluster Based Routing Protocol

PBRP	Position Based Routing Protocol
GPS	Global Position System
WCA	Weighted Clustering Algorithm
CBR	Constant Bit Rate
NQWCA	Node Quality based Weighted Clustering Algorithm
EECP	Energy Efficient Cluster Based Routing Protocol
PSO	Particle Swarm Optimization
LEACH	Low Energy Adaptive Clustering Hierarchy
GACR	Genetic Algorithm based Clustering and Routing
CLACR	Core Location-Aided Cluster-based Routing protocol
CMDSR	Cluster-Based Multipath Dynamic Source Routing
NS	Network Simulator
TCL	Tool Command Language
UDP	User Datagram Protocol
ТСР	Transmission Control Protocol
OTCL	Object Tool Command Language
RREQ	Route Request
RREP	Route Reply
RERR	Route Error
GUI	Graphical User Interface
MAC	Media Access Control
ECM	Energy Consumption Model
СНЕ	Cluster Head Election
EQ	Energy and Quality of Services
EE	Efficient Energy

ABOUT THE AUTHORS

Dr. Parveen Kumari Assistant Professor, Computer Science and Applications GITAM, Kablana

Prof (Dr.) Gaurav Aggarwal Dean & HOD Faculty of Engineering and Technology Jagan Nath University, Bahadurgarh

Prof (Dr.) Sugandha SinghDean, Faculty of Engineering and Technology,SGT University, Gurugram

